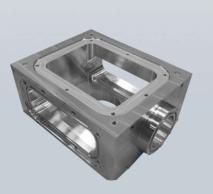


OPEN POSSIBILITIES

MB-5000HTT Horizontal Machining Center


A World's Fastest Class Machine


MB-5000HII achieves optimal machining at the fastest speed possible in various production forms, from mass production to variable-mix, variable-volume production. All of the units have been updated to realize revolutionary productivity. With high durability and reliability, the machine can demonstrate its best performance even on the shop floor in a tough environment.

MB-5000HII

Photographs and images used in this brochure may include optional equipment.

Achieving high-speed performance in the world's fastest class

Quick machine movements

Fast acceleration/deceleration in the axis feed for shorter positioning times, high-speed table rotation, and shorter tool change times — all are effective toward achieving cycle times of the world's fastest class.

■ Reduced positioning times

With fast accel/decel axis feeds designed to reduce positioning times:

Rapid traverse acceleration (max)
 X-axis: 1.0 G
 Y-axis: 1.1 G
 Z-axis: 1.0 G

• Rapid traverse X-Y-Z axes: **60 m/min**

■ Machining Time Shortening Function

MTSF shortens machining time in operations with repeated rapid traverse (G00) and cutting feed (G01) movements for parts with many drilled holes. (See "Cycle time reduction" on page 12 for details.)

Note: The amount by which machining time is reduced will differ depending on machine setup, machined part shape, and part program.

■ Reduced table indexing times

A roller gear cam mechanism is used for the 0.001-degree indexing table (option), and that has minimized indexing time. Fast indexing has been achieved.

• 90° indexing: 1.0 sec*

• 180° indexing: 1.2 sec*

* With 0.001° indexing table (option)

■ Reduced ATC times

The ATC disk magazine provides faster operations.

The farthest tool magazine indexing time possible is 5.1 seconds.

ATC tools: 48 (No. 40 spindle)

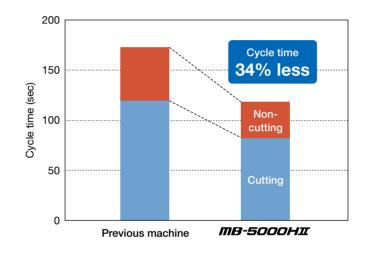
• ATC time: T-T*1: **0.9 sec** (tool mass: 4 kg or less)

1.3 sec (tool mass: 4 kg or higher)

CTC min*2: 2.1 sec (tool mass: 4 kg or less)

2.5 sec (tool mass: 4 kg or higher)

• Farthest pot indexing: **5.1 Sec** (With 48-tool magazine)


*1. MAS standard measurements (formerly JIS B 6013)
*2. ISO 10791-9 (2001) (JIS B 6336-9) measurements

Fast machining of aluminum parts in mass production

■ High-speed machining example of aluminum mass production

The cycle time became 34% less compared to the previous machine.

[High-speed drilling]

In addition, with the high-speed machining spindle* (20,000 min-1, 30/22 kW) (option) for aluminum, tapping and other applications can be faster.

 * Spindle ramp up for 0 \rightarrow 15,000 min⁻¹: 1.3 sec (38% shorter compared to standard specs)

Also handles powerful cutting of steel

The lineup of spindles with roller bearings, compared to ball bearings, has higher rigidity. (option) In addition to No. 40 spindles, No. 50 spindles are also available. With large-diameter side cutters and long boring bars etc, deep hole and protruding cut applications can be handled.

[Max tool length: 510 mm, max tool weight: 12 kg (No. 40 spdl), 15 kg (No. 50 spdl)]

■ Power spindles (options)

Spindle taper: 7/24 taper No. 40 (BIG-PLUS®), HSK-A63
 7/24 taper No. 50 (BIG-PLUS®), HSK-A100

Bearing dia: ø90 mm (roller bearings)
 Oil-air lubrication

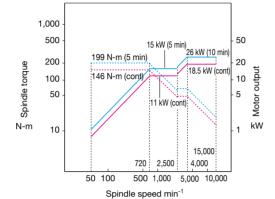
End milling capacity 704 cm³/min (S45C)

Spindle speed: 12,000 min⁻¹

Max output: 33/26 kW (10 min/cont)Max torque: 302 N-m (10%ED)

The lineup of highly rigid and highly torqued spindles

The spindle lineup


Standard spindle (No. 40)

For highly efficient machining of general machine parts

Spindle speed: 15,000 min⁻¹

Max output: 26/18.5 kW (10 min/cont)

Max torque: 199/146 N-m (5 min/cont)

Face milling capacity

483 cm³/min (S45C)

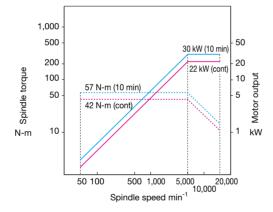
Tool: ø80 face mill

8 blades (cermet)

 Spindle speed: 1.194 min⁻¹ • Cuttina: 300 m/min

Feed rate: 3,750 mm/min

• Cut width:


2.3 mm • Cut depth:

High-speed spindle (No. 40) for aluminum applications

(option) For fast machining of aluminum

Spindle speed: 20.000 min⁻¹

Max output: 30/22 kW (10 min/cont) Max torque: 57/42 N-m (10 min/cont)

Face milling capacity

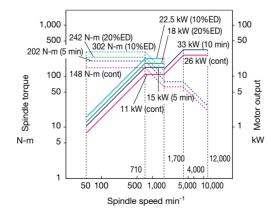
2,700 cm³/min (A5052)

ø63 face mill 5 blades (carbide)

 Spindle speed: 15.000 min⁻ • Cuttina: 2.968 m/min 20.455 mm/min Feed rate:

• Cut width: 44 mm

3 mm • Cut depth:


Power spindles (No. 40/No. 50)

(options)

For powerful cutting of castings and cast steel parts

• Spindle speed: 12,000 min⁻¹

Max output: 33/26 kW (10 min/cont) Max torque: 302 N-m (10%ED)

End milling capacity

704 cm³/min (S45C)

ø20 roughing end mill

7 flutes Spindle speed: 4,029 min • Cutting: 253 m/mir Feed rate: 8,800 mm/min

• Cut width: 4 mm 20 mm Cut denth:

Face milling capacity

628 cm³/min (S45C)

ø100 face mill

5 blades (cermet) Spindle speed: 955 min⁻¹ • Cutting: 300 m/mir 1.910 mm/mir Feed rate: • Cut width: 70 mm

• Cut depth: 4 7 mm

Note: The "actual data" referred to above for this brochure represent examples, and may not be obtained due to differences in specifications, tooling, cutting condition, and others.

5

Chip discharge designed to achieve maximum operating times

Machining chamber with accumulated chips and biting into covers - thoroughly removed

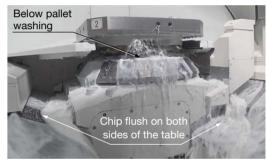
In-machine covers renewed. Flat covers are used to drastically improve chip discharge. Moreover, with simpler designs, chip accumulation and biting-in troubles have been prevented. The machine has the high durability fully capable of withstanding the long continuous runs required for mass production at maximum rapid-traverse rates and machining capacity.

In-machine covers with improved reliability

X-/Y-axis with armored bellows, and the Z-axis with a single steel sheet cover minimize chip biting-in damage.

Single stainless steel cover (Z-axis)

6


With smooth chip discharge. long continuous machining

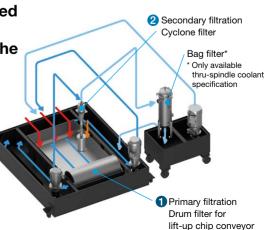
- Below pallet wash, table both-side chip flush are standard. Long continuous runs are strongly supported by in-machine covers preventing chip accumulation in any.
- Large-volume shower coolant washes machining chamber corners and table periphery, to prevent chip accumulation.

■ Full center trough achieves chip discharge from any type of machining application

- All areas of the machining chamber converge with the in-machine chip
- Larger directly-below-spindle discharge port. Smoother out-machine chip discharge possible

X-/Y-axis armored bellow covers

Troublesome coolant tank cleaning work is reduced dramatically to increase productivity. In addition, the environmental impact caused by the disposal of coolant is reduced.


Sludgeless Tank (option)

Sludge removal rate 99% (when the material is casting and aluminum) Note: After secondary filtration (cyclone filter) permeation. Okuma evaluated removal rate.

No tank cleaning for 3 years (okuma equipment actual data)

No coolant replacement for 3 years (okuma equipment actual data)


Note: If the Sludgeless Tank option is selected, a chip conveyor with drum filter must also be selected

Proud of space-saving designing for class best floor space productivity

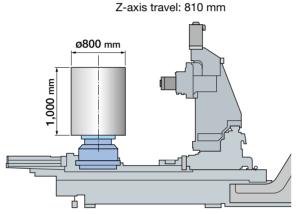
With a small footprint, providing a large machining area

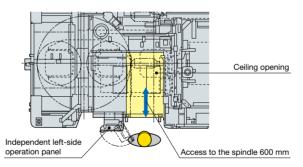
■ Class smallest installation space

(RDF lift-up chip conveyor with drum filter)

■ User-friendly operation

- Independent left-side operation panel (swivel type)
 The panel can be operated while watching workpieces to improve operability
- Column traverse system provides an easy access to the spindle and workpiece
- The overhead door can be opened to let light in and eliminate coolant drops


Class largest, wide machining area


Max machining dia: Ø800 mm

Max machining height: 1,000 mm

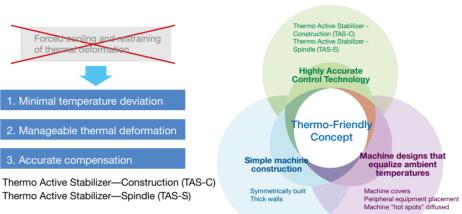
• Machining area X-axis travel: 760 mm

Y-axis travel: 760 mm

Multi-Pallet Tower APC

Tower 12P-APC pallet system

Setup station


Tower 12P-APC pallet system 8,752 mm PPC operation panel Setup station

Reliable machining with high accuracy and outstanding thermal stability

Thermo-Friendly Concept

The unique approach of "accepting temperature changes"

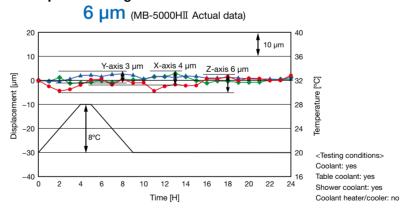
■ Thermo-friendly construction gives outstanding thermal stability

■ Eliminate waste with the Thermo-Friendly Concept

Okuma's Thermo-Friendly Concept achieves high dimensional stability not only when the room temperature changes, but also at machine startups or when machining is resumed.

The warm-up operation time to stabilize thermal deformation is shortened, and the burden of dimensional correction when resuming machining is reduced.

Machine startup


Machining restart

Room temp change

Machining dimensional change over time minimized with outstanding dimensional stability

High dimensional stability

Machining dimensional change with ambient temperature range of 8°C

■ TAS-C (Thermo Active Stabilizer – Construction)

TAS-C estimates and accurately controls the volumetric thermal deformation of the machine's construction due to ambient temperature changes; based on data from properly placed sensors, feed axis positions, and actual machine thermal deformation characteristics.

■ TAS-S (Thermo Active Stabilizer – Spindle)

The TAS-S spindle thermal deformation control takes into account various conditional changes such as the spindle's temperature data, modification of the spindle rotation and speed, as well as spindle stoppage. The spindle's thermal deformation will be accurately controlled, even when the rotating speed changes frequently.

High-accuracy machining

High accuracy

 Even higher accuracy with Y-axis motor base cooling (standard) and ball screw cooling (option)

High-precision index table

- NC 0.001° indexing (option)
 Indexing time (90°/180°) 1.0/1.2 sec
- A roller gear cam is used for the drive
 The pallet seating on a tapered cone achieves highly accurate positioning and excellent durability

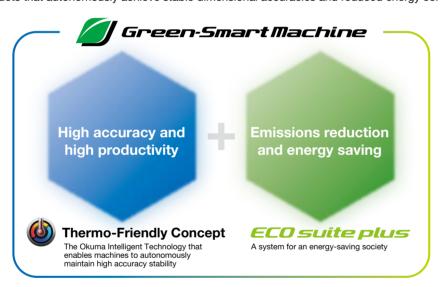
Highly rigid bed

 A highly rigid 3-point support bed is used to enable easy installation and stabilize accuracy for a long time

Contribution to the realization of a carbon-free society

Highly productive, accurate and eco-friendly Green-Smart Machine

Okuma has worked to reduce energy consumption in order to achieve carbon neutrality at the three factories in Japan which are our main production bases.


We have realized high productivity through automation and process-intensive machining, in addition to high-accuracy machining, and we then introduced the use of green energy to transform the three domestic factories into carbon-neutral factories.

"Green-Smart Machines" is our definition of Okuma's intelligent machine tools, which autonomously achieve stable dimensional accuracy and reduced energy consumption, to support environmentally friendly production. Our policy is to deploy "Green-Smart Machines" fully, to help achieve a carbon-free society.

Starting with products manufactured at those carbon-neutral factories and supplying them all over the world, we will work together with our customers to help solve the social issues faced by the manufacturing industry.

Green-Smart Machines are environmentally friendly

products that autonomously achieve stable dimensional accuracies and reduced energy consumption.

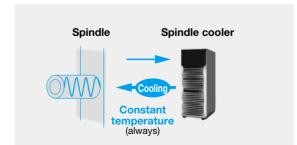
Thermo-Friendly Concept

The Okuma Intelligent Technology that enables machines to autonomously maintain high accuracy stability

The unique concept of accepting temperature changes achieves consistent high accuracy without special coolers or excessive air conditioning.

Reduction of warm-ups and dimensional compensation

Reduce the time needed for daily warm-ups and dimensional compensation to adjust to ambient temperature changes


Reduction of power used for air conditioning

Maintain high stability of dimensional accuracy even if the air conditioning temperature range is expanded.

■ Reduction of machine body coolers

Achieve outstanding dimensional accuracy without any special machine body cooling being required to maintain accuracy

■ The Okuma way to cool

By always setting a constant coolant supply temperature, the cooler power consumption is reduced.

ECO suite plus

A system for an energy-saving society

■ ECO Idling Stop

Auxiliary equipment consume a substantial portion of the power used in a factory. This function enables each of them to be turned off when not needed to reduce power consumption.

In addition to when automatic operation is suspended, it is now possible to stop idling during manual operation. Power consumption and carbon dioxide emissions are reduced without conscious effort by the operator.

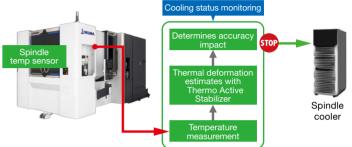
■ ECO Operation

By using only the required peripherals (chip conveyor, mist collector), energy-saving operations are possible.

■ ECO Power Monitor

Power is shown individually for spindle, feed axes, and auxiliaries on the OSP operation screen.

In addition to regenerative power, the energy-saving benefits from auxiliary equipment stopped with ECO Idling Stop can be confirmed on the spot.


1 Check carbon dioxide emissions on the spot

With ECO suite plus, you can also check the power consumption of each device.

2 Simultaneously records operating status and carbon dioxide emissions

With ECO suite plus, recording carbon dioxide emissions for each device, and data output is possible.

■ The machine monitors the cooling level when not machining, and proactively turns off the cooler while maintaining high accuracy conditions.

3 Analyze carbon dioxide emissions and improve machine tool operation

With ECO suite plus, not only the display on the machine but data analysis for each device is also possible on a PC, to see a more detailed carbon dioxide emission analysis.

Example of utilizing One-Touch Spreadsheet (option) to create visual feedback of machine's power consumption and carbon dioxide emissions.

A wide variety of advanced technologies to increase productivity

Al Machine Diagnosis Function (option)

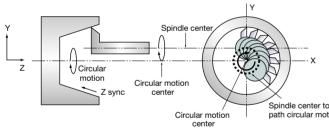
Machine tool diagnostics technology with artificial intelligence (AI)

■ With predictive maintenance, prevent machine stoppages just in time

Okuma's Al-equipped control diagnoses the presence or absence of abnormalities in the machine spindle and feed axes and identifies any irregularities found.

Downtime from machine stoppage is minimized, so the benefits are highly accurate, productive, and stable operations over the long term. The operators themselves can easily diagnose the machine by following simple screen guidelines on the Okuma control.

Al diagnostic models are already installed, and diagnoses can be performed by the machine itself. Al diagnostic models can be updated through Okuma's Connect Plan. With AbsoScale detection specs, ball screw wear detection is possible.


Turn-Cut (option)

Turning operations on machining centers

■ Shorter lead times with process-intensive machining

Simultaneously controlling X-Y circular motion with the tool edge position rotated by the spindle tool enables lathe-like turning.

- Tapers also possible
- Hole making with different diameters with one tool
- Machine IDs/ODs with ATC-oversized large tool diameters

Note: AbsoScale detection and ball-screw cooling required.

[Turning valve parts]

With Turn-Cut, it's possible to turn the seating surfaces required by gas pipe sealing conditions.

Flat-Tool Grooving (option)

Airtight seal grooving

The spindle phase is precisely synchronized with cutting edge motion, to perform highly accurate grooving.

Self-diagnosis of spindle and feed axis status with Al Detects damage to s) 2018/11/21 05:46:10,488 Detects ball screw wear condition Detects damage to ball screw support bearings

Spindle center too

11

Grooving with high sealability

- Getting high sealability without hand finishing.
- Complex seal groove curves also cut with flat tools.

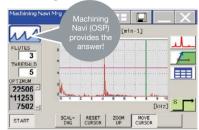
Okuma Intelligent Technology exhibits powerful effect on machine shop floors

Collision Avoidance System (option)

Allowing operators to focus on making parts

■ World's first "Collision-Free Machine"

CAS prevents collisions in automatic or manual mode, providing risk-free protection for the machine and great confidence for the operator.


Machining Navi M-i, M-gII+ (option)

Cutting condition search for milling

Longer tool life and shorter machining times by optimizing cutting conditions

Searches for the best cutting conditions

- Machining Navi M-i changes automatically to optimum spindle speed
- Machining Navi M-gII+ displays several spindle speed possibilities

SERVONAVI

Optimized Servo Control

Achieves long term accuracy and surface quality

SERVONAVI AP (Automatic Parameter setting)

Work Weight Auto Setting

Cycle time shortened with faster acceleration

Work Weight Auto Setting estimates the weight of the workpiece and fixture on the table and automatically sets the liner axis servo parameters, including acceleration, to the optimum values. Cycle times are shortened with no changes to machining accuracy.

Rotary Axis Inertia Auto setting

Maintains high accuracy and stable movements

The "ServoNavi Rotary Axis Inertia Auto Setting" estimates the inertia of the workpiece and jig from the acceleration torque, and automatically sets the optimum servo parameters for the table rotation axis, including acceleration, thereby maintaining the high-precision operation of the table rotary axis.

Moreover, the table indexing time for light weight workpieces is

■ SERVONAVI SF (Surface Fine-tuning)

Reversal Spike Auto Adjustment

 Maintains machining accuracy and surface quality SERVONAVI'S Reversal Spike Auto Adjustment maintains machining accuracy by switching servo parameters to the optimum values matched to changes in slide resistance.

Vibration Auto Adjustment

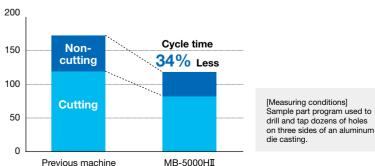
Contributes to longer machine life

Vibration Auto Adjustment can quickly eliminate noise and vibration even from machines with years of operation.

Cycle time reduction

Significantly shortens cycle times and reduces power consumption

- Operation time reduction: The non-cutting time is shortened by simultaneously performing multiple operations, such as spindle rotation and axis feed, and allowing the rotary axis to take the shortest path
- Machining time shortening: The cycle time is reduced for parts machining with frequent switches between cutting feed and rapid traverse by using feeder-mode high-speed switching and optimal acceleration/deceleration


8

Easy parameter setting: Collects parameters related to cycle time reduction in a single screen for enabling changes and reuse in a single

12

Parameter easy setting Setting screen

■ Machine Specifications

			МВ-5000НⅡ						
	Item	Unit	No. 40	[No. 50]*1					
Travels	X-axis (Left/right column)	mm (in)	760 (29.92)						
	Y-axis (spindle up/down)	mm (in)	760 (2	29.92)					
	Z-axis (table front/back)	mm (in)	810 (3	31.89)					
	Spindle center to pallet top	mm (in)	50 to 810 (1.	.97 to 31.89)					
	Spindle nose to pallet center	mm (in)	100 to 910 (3	3.94 to 35.83)					
Pallet	Pallet size	mm (in)	500 × 500 (19.69 × 19.69)						
	Max load	kg (lb)	500 (1,100)						
	Indexing angle	deg	1 [0.	001]					
	Max workpiece dimensions	mm (in)	ø800 × 1,000	(31.5 × 39.37)					
Spindle	Spindle speed	min ⁻¹	15,000 [12,000, 20,000]	12,000					
	Tapered bore		7/24 taper No. 40	7/24 taper No. 50					
			[HSK-A63]	[HSK-A100]					
	Bearing dia	mm (in)	ø70 (2.76) [12,000 min ⁻¹ : ø90 (3.54)]	00 (0.54)					
			[20,000 min ⁻¹ : ø70 (2.76)]	ø90 (3.54)					
Feedrate	Rapid traverse	m/min (fpm)	X, Y, Z: 60 (196.86)						
	Cutting feedrate	mm/min (ipm)	X, Y, Z: 1 to 60,000 (0.04 to 2,362)						
Motors	Spindle (10 min/cont)	kW (hp)	26/18.5 (35/25) [12,000 min ⁻¹ : 33/26 (44/35)]	33/26 (44/35)					
			[20,000 min ⁻¹ : 30/22 (40/30)]	33/20 (44/33)					
	Feed axes	kW (hp)	X, Y, Z: 5.2 (6.9)						
	Table indexing	kW (hp)	3.0 (4.0) [4.6 (6.1)]						
ATC	Tool shank		MAS403 BT40	MAS403 BT50					
			[CAT40, DIN40, HSK-A63]	[CAT50, DIN50, HSK-A100]					
	Pull stud		MAS2 [MAS1,						
	Magazine capacity	tools	48* ² [64]* ² [100]* ³	40* ² [60]* ² [80]* ³					
			[140, 180, 220, 260, 300, 340]* ⁴	[90, 120, 150, 180, 210, 240]* ⁴					
	Max tool dia (w/ adjacent)	mm (in)	ø90 (ø3.54)	ø100 (ø3.94)					
	Max tool dia (w/o adjacent)	mm (in)	ø170 (ø6.69)					
	Max tool length	mm (in)	510 (2	20.08)					
	Max tool weight	kg (lb)	12 (26.4)	15 (33)					
	Tool selection		Memory random	[fixed address]*5					
Machine	Height	mm (in)	2,885 (113.58)					
Size	Floor space; width × depth (RDF specs)*6	mm (in)	2,540 × 5,620 (100 × 221.26)	2,900 × 5,620 (114.17 × 221.26)					
	Mass	kg (lb)	13,700 (30,140)	14,000 (30,800)					
Controller			OSP-P500M						

^{*1.} No. 50 spindle is optional *2. Disk magazine *3. Chain magazine *4. Matrix magazine *5. Chain and matrix magazine types use the fixed address *6. With RDF drum filter lift-up chip conveyor []: option

■ Standard Specifications

Spindle speed	15,000 min ⁻¹ , 26/18.5 kW (10 min/cont)	X-/Y-axis armored bellows					
ATC magazine capacity	48 tools	Hydraulic unit					
Spindlehead cooling system	Oil temperature controller	Automatic 1° indexing table					
Centralized lubrication auto	Grease cartridge 700 ml, and with	2-pallet rotary-shuttle APC	Pallet top surface M16 tap				
grease supply unit	grease level and pressure warnings	Full enclosure shielding	Two-pallet pivoted type for APC				
Coolant supply system	Tank 1,000 L (Effective: 710 L),	ATC operation panel					
	pump 3.3/3.8 kW (50/60 Hz)	Work lamp	LED lamp				
In-machine chip discharge	Hinge type chip conveyor	Status indicator	3 phase C type				
Chip pan for above			Red (alarm), Yellow (end), Green (running)				
ATC air blower (blast)		Foundation washers, jack bolts					
Chip air blower (blast)	Nozzle type	Tool release lever					
In-machine chip washer		Tapered bore cleaning bar					
Shower coolant system 10 nozzles		Hand tools					
Below pallet washing		TAS-S	Thermo Active Stabilizer - Spindle				
Air filter and oiler		TAS-C	Thermo Active Stabilizer - Construction				

Optional Specifications

Spindle speeds	12,000 min ⁻¹ , 33/26 kW (10 min/cont)	Chip air blower (blast)	Adapter				
* See P5 for details	20,000 min ⁻¹ , 30/22 kW (10 min/cont)	Sludgeless Tank					
Dual contact spindle*1	HSK, BIG-PLUS®	Off-machine chip discharge	· Hinge				
ATC magazine capacity	64 (disk magazine), 100 (chain)	(lift-up chip conveyor types)	· Scraper + drum filter				
(No. 40)	140, 180, 220, 260, 300, 340	* See the table below	· Hinge + scraper + drum filter				
	(matrix magazine)	for details	Conveyor discharge heights; 800, 1,200 mm				
ATC magazine capacity	60 (disk magazine), 80 (chain)	Chip buckets for above	Heights: 700 mm, 1,000 mm				
(No. 50)	90, 120, 150, 180, 210, 240	Hydraulic oil cooler					
	(matrix magazine)	Coolant heater/cooler					
AbsoScale detection	X-Y-Z axes	Tool breakage detection	Auto tool length compensation included				
Auto 0.001° indexing table	Built-in NC table		(touch sensor)				
Auto pallet changer (APC)	6-P parallel shuttle, 12-P tower, FMS	In-magazine tool breakage					
Pallet top	T-slots, inch holes	detection					
Spare pallets		Auto zero offset	Auto gauging (touch probe)				
Edge locator		Tool life management	By cumulative operation timer, etc				
Oil-hole coolant system	1.5 MPa	Pull stud bolt shape	MAS1, CAT, DIN, JIS				
Thru-spindle coolant*2	1.5, 7.0 MPa; Large flow 1.5, 7.0 MPa	Standard T-column fixture	Height: 850 mm, Pitch:100 mm				
Workpiece wash gun		Standard square-column fixture	Height: 850 mm, Pitch:100 mm				
Oil mist lubricator		Ball-screw cooler	X-Y-Z axis				

^{*1.} Be sure to select this specification when BIG-PLUS® holder is used.

■ Recommended chip conveyors

(Please contact an Okuma sales representative for details.)

O: Recommended △: Conditionally recommended

Workpiece materia	ıl	Steel	FC	Aluminum / Non-ferrous metal	Mixed (general use)
Chip shape					
In-machine	Hinge type (Standard) *1	0	0	0	0
0" 1: 1:	Hinge + scraper with drum filter	△*2	△ (Wet) *3	0	0
Off-machine chip discharge	Hinge type	0	_	_	△ *4
(option)	Scraper type	_	○ (Dry)	_	
, , ,	Scraper type with drum filter	_	○ (Wet) with magnet	△*5	_

^{*1.} Scraper type (option) can be selected.
*2. When there are many fine chips
*3. When chips are longer than 100 mm
*4. When there are few fine chips

■ Off-machine lift-up chip conveyors

_	· · · · · · · · · · · · · · · · · · ·			
Туре	Hinge + scraper with drum filter	Hinge	Scraper	Scraper with drum filter
Shape				

| 14

Note: Becomes hinge + scraper (with drum filter) if Sludgeless Tank (option) is selected.

13

^{*2.} Okuma pull stud required with thru-spindle coolant.

^{*5.} When chips are shorter than 100 mm

A next-generation CNC that makes manufacturing DX (digital transformation) a reality

OSP-P500

Improved productivity and stable production

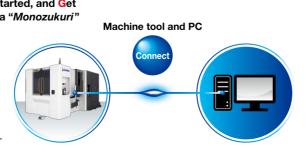
As Your Single Source for M-E-I-K (Mechanics - Electronics - IT - Knowledge) merging technology, Okuma offers this CNC to build an advanced "digital twin" that faithfully reproduces machine control and machining operations and creates new value. In addition, Okuma offers productivity improvement and stable production with ease of use that allows customers to use their machining know-how, an energy-saving solutions that achieve both high accuracy/productivity and eco-friendly products, with robust security protection against increasing threats of cyber attacks.

Faithful reproduction of machines and processing — Digital support for shop floor work Digital Twin (option)

"Okuma's two digital twins" made possible by an office PC and a next-generation CNC reduce machine downtime and improve machine utilization

Simulation using the latest machine information can be achieved with an office PC and OSP-P500 installed on the physical machine. This enables preparation for machining in advance in the office environment (front loading). Preparing machining for the next part while continuing machining can reduce the preparation time for the physical machine. When a problem occurs on the shop floor, it can be solved quickly on site without going back to the office.

15-inch operation panel


Digital Twin On PC **Digital Twin On Machine** Simulate shop machines in the office Simulating the CNC of a real machine Front loading is performed with the actual status matched with the Super-fast and super-accurate machining simulations are performed with the data on the office PC to further improve productivity. CNC of a real machine on-site to minimize machining preparation work. Highly accurate pre-verification minimizes trial and error in first part Actual machining can be started immediately, greatly improving the machining, and reduces machine downtime to the minimum operating rate of the machine. *1. The PC software is to be used with one package for one machine Front loading Using the results confirmed Verification of setup by the office simulator on Reducing work on the Verifying the setup status in a the actual machine physical machine to increase virtual space on the machine the operating rate IIoT gets the latest Virtual space nachining by simulator Actual machining Using the latest machine data Note: The screens above are examples of the Collision

Connect Plan Get Connected, Get Started, and Get Innovative with Okuma "Monozukuri"

15

Connect, Visualize, Improve

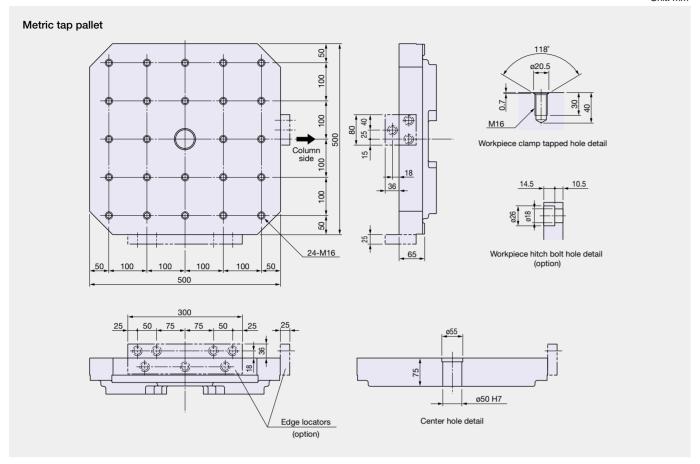
Okuma's Connect Plan is a system that provides analytics for improved utilization by connecting machine tools and visual control of factory operation results and machining records. Simply connect the OSP and a PC and install Connect Plan on the PC to see the machine operation status from the shop floor, from an office, from anywhere. The Connect Plan is an ideal solution for customers trying to raise their machine utilization.

A next-generation CNC OSP-P500M standard specifications

Basic Specs	Control	X, Y, Z, simultaneous 3 axis, spindle control (1 axis)						
	Position feedback	OSP full range absolute position feedback (zero point return not required)						
	Coordinate functions	Machine coordinate system (1 set), work coordinate system (20 sets)						
	Min/max command	99999.999 mm, ±9999.999° 8-digit decimal, command units: 0.001 mm, 0.01 mm, 1 mm, 0.0001°, 0.001°, 1°						
	Feed	Cutting feed override: 0 to 200%						
	Spindle control	Direct spindle speed commands, override 30 to 300%, multi-point indexing						
	Tool compensation	No. of registered tools: Max 999 sets, tool length/radius compensation: 3 sets per tool						
	Display	15-inch color LCD + multi-touch panel operations						
	Security	Operator authentication, Lock screen, OSP-VPSII-STD (Virus Protection System)						
Programming	Program capacity	Program storage capacity: 4 GB; operation buffer: 2 MB						
	Program operations	cheduled program, fixed cycle, G-/M-code macros, arithmetic, logic statements, math functions, variables, branch commands						
		coordinate calculate, area machining, coordinate convert, programming help, user task, keyway cycle						
Operations	OSP suite	'suite apps" to graphically visualize and digitize information needed on the shop floor,						
		"suite operation" enable one-touch access to "suite apps".						
	Easy Operation	"Single-mode operation" to complete a series of operations. Advanced operation panel/graphics facilitate smooth machine control						
	MacMan plus	Machining management: aggregation and display of machining records, operating records and problem information,						
		visualization of power consumption, file output						
	Machine operations	Operation help, load meter, alarm help, sequence return, manual interrupt/auto return, pulse handle overlap, parameter I/O,						
		PLC monitor, auto power shut-off						
Communications	/ Networking	USB (2 ports), Ethernet, DNC-T1, Smart I/F						
High speed/accu	iracy specs	Thermo Active Stabilizer—Spindle (TAS-S), Thermo Active Stabilizer—Construction (TAS-C), Hi-Cut Pro,						
		pitch error compensation, Hi-G control, SERVONAVI, Cycle time reduction (operation/machining time reduction,						
		easy parameter setting)						
Energy-saving	ECO suite plus	ECO Idling Stop, ECO Operation, oil temperature controller auto control, ECO Power Monitor						
functions	Power Regeneration System	Regenerative power is used when the spindle and feed axes decelerate to reduce energy waste.						

A next-generation OSP-P500M kit specifications/optional specifications

Itam	Kit specs	-	ML	_	OT	_	TC	_	AOT	Kit specs	NN		AC	_	D.		DT.	_
tem		E	D	Е	D	E	D	E	D	Item	Е	D	Е	D	Е	D	E	1
Digital Twin										Gauging								
Virtual Machining						•	•	•	•	Auto tool length offset/breakage detection							ــــــ	L
						(VE)	(VD)	1	(VD)	In-magazine tool breakage detection							<u> </u>	L
Quick Modeling						•	•	•	•	Auto Workpiece Gauging/Auto zero offset					_		<u> </u>	L
		_	_		_	(VE)	` '	1	(VD)	Manual gauging (w/o sensor)	•	•	•	•	•		•	•
OPC UA for Machine	Tools	_	_	_	_	•	•	•	•	Interactive gauging (touch sensor, touch probe required)								L
OSP API KIT						•	•	•	•	Monitoring								
nteractive functions						_				21.5-inch color LCD operation panel with adjustable-tilt								
	IGF-M (w/ Real 3-D simulation)	_	_	•	•	-	ļ.,	•	•	keyboard							<u> </u>	╀
Interactive MAP (I-MA	.P)	_	├	-	<u> </u>	•	•	 _	<u> </u>	One-Touch Spreadsheet					_		₩	L
Smart OSP Operation		_	<u> </u>	•	•	•	•	•	•	Collision Avoidance System					_		<u> </u>	L
Programming										Real 3-D Simulation			•	•	•	•	•	1
Operation buffer 10 M	В	•	•	•	•	•	•	•	•	Simple load monitor Spindle overload monitor		•	•	•	•	•	•	(
Program notes (MSG)		•	•	•	•	•	•	•	•	NC operation monitor Hour meter, workpiece counter	•	•	•	•	•	•	•	1
Auto scheduled progra	am update	•	•	•	•	•	•	•	•	Status indicator							<u> </u>	L
Block skip; 9 sets			_		_	_	_	_	Ш	Operation end buzzer							<u> </u>	
Program branch; 9 set		_	_		_		_	_	Ш	Workpiece counters on machine							<u> </u>	
Coordinate system	100 sets	•		•		•		•	Ш	Tool breakage no-load detection		•		•		•	₩	•
select (Std: 20 sets)	200 sets		•		•		•	_	•	MOP-TOOL Adaptive control, overload monitor							<u> </u>	
	400 sets									Al machine diagnostics * Spindle/feed axes, or feed axes only							<u> </u>	L
Helical cutting		•	•	•	•	•	•	•	•	Machine Status Logger								
3-D circular interpolation										Cutting Status Monitor								
Skip									Ш	Machining Navi M-i, M-gII+(cutting condition search)								
Synchronized Tapping II		•	•	•	•	•	•	•	•	Feed axis retraction								
Arbitrary angle chamfe	ering	•	•	•	•	•	•	•	•	Tool retract cycle								
Cylindrical side facing										Automation / unattended operation								
Tool max rotational sp	eed setting								Ш	Warm-up (calendar timer)								
F1-digit feed	External switch type, parameter type									External program Button, rotary switch								
Programmable travel I	imits (G22, G23)	•	•	•	•	•	•	•	•	Digital switch, BCD (2-digit, 4-digit)								
Slope machining	Type I, Type II									Pallet pool control (PPC) (Required for multi-pallet APC)								
Axis name designation	1								Ш	Connection with Robot, loader I/F								
Fixture offset II										automated devices Stacker crane I/F								
Dynamic fixture offset										FMS link I/F								
Tool grooving										High-speed, high-precision								
Turn-Cut										AbsoScale detection X-Y-Z axes								
Dynamic Tool Load Co	ontrol									Dynamic displacement compensation		•	•	•	•	•	•	•
3-D tool compensation	n									0.1 µm control (linear axis commands)								
Drawing conversion	Programmable mirror image (G62)		•		•		•		•	Hyper-Surface ■ 3 linear axes, 3 linear axes + 2 rotary axes								
	Enlarge/reduce (G50, G51)		•		•		•		•	ECO suite plus								
User task	Common variables 1,000, 2,000 pcs									ECO Power Monitor On-machine wattmeter								Г
	G-code macros: 80 sets added									Spindle Power Peak Limiter								
	I/O variables (16 each)									Energy-saving hydraulic unit ECO Hydraulics								Г
Sequence stop		•	•	•	•	•	•	•	•	External output interface of consumed electricity								T
Sequence return	Mid-block sequence return		•		•		•		•									
Tool wear compensation	Includes input restriction	•	•	•	•	•	•	•	•	Circuit breaker								Г
Tool life management		•	•	•	•	•	•	•	•	OSP-VPSII-EX (Virus Protection System)								Г
External I/O communic	ation									Pulse handles 2 pcs, 3 pcs								Г
RS-232C connector										External M codes [4 sets, 8 sets]								Т
DNC connection	DNC-T3, DNC-B, DNC-DT								П	Note. NML: Normal kit, AOT: Advanced One-Touch IGF-M kit, E	T- Di	nital	Twin	kit .			-	_
	DNC-C/Ethernet							1		DT AOT: Digital Twin Advanced One-Touch IGF-M, E: Eco		_						


DT AOT: Digital Twin Advanced One-Touch IGF-M, E: Economy, D: Deluxe

VE and VD kits are also equipped with the Digital Twin on PC function, allowing running from a PC. * With AbsoScale detection specs, ball screw wear detection is possible

Specifications, etc. are subject to change without notice.

16

■ Pallet dimensions

Working range

[]: T-slot pallets

Area A: Spindlehead interference

X-axis travel: 760 mm

Unit: mm

Y-axis travel: 810 mm

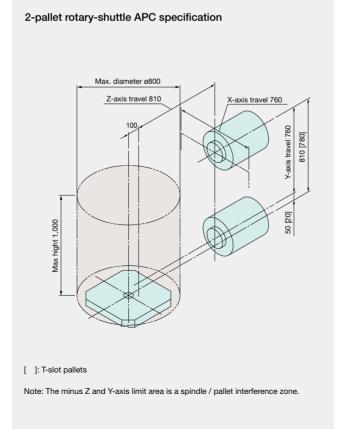
Z-axis travel 810

X-axis travel 760

Area A

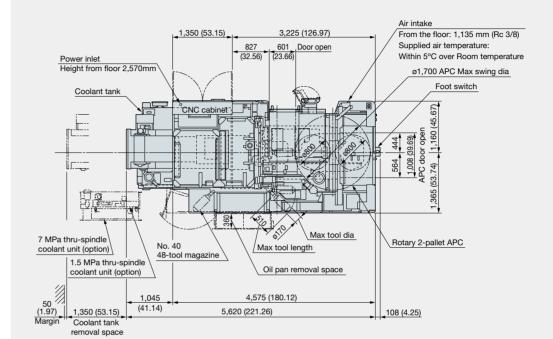
Pallet center

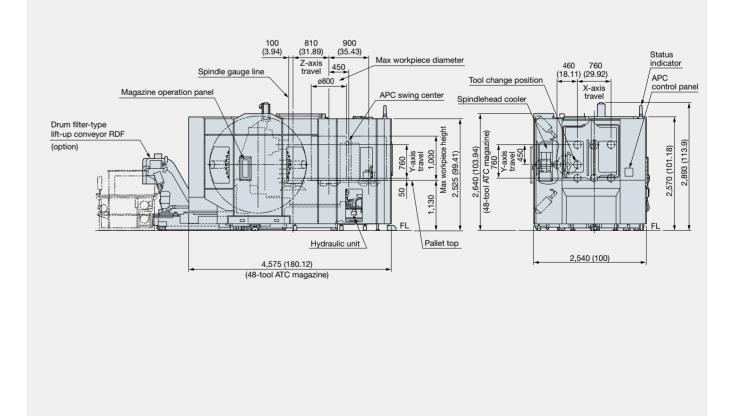
Note: The machine should be operated with caution and with reference to the


● 160 × 50 mm or larger when the B-axis is other than 0, 90, 270, or 360 degrees.

following interference areas described below.

● 160 × 50 mm when the B-axis is 0, 90, 270, or 360 degrees.


■ Maximum workpiece dimensions


Unit: mm

MB-5000HI

Dimensional and Installation Drawings (No. 40 Spindle)

18

Unit: mm (in)

17

OKUMA Corporation

Oguchi-cho, Niwa-gun, Aichi 480-0193, Japan TEL: +81-587-95-7825 FAX: +81-587-95-6074