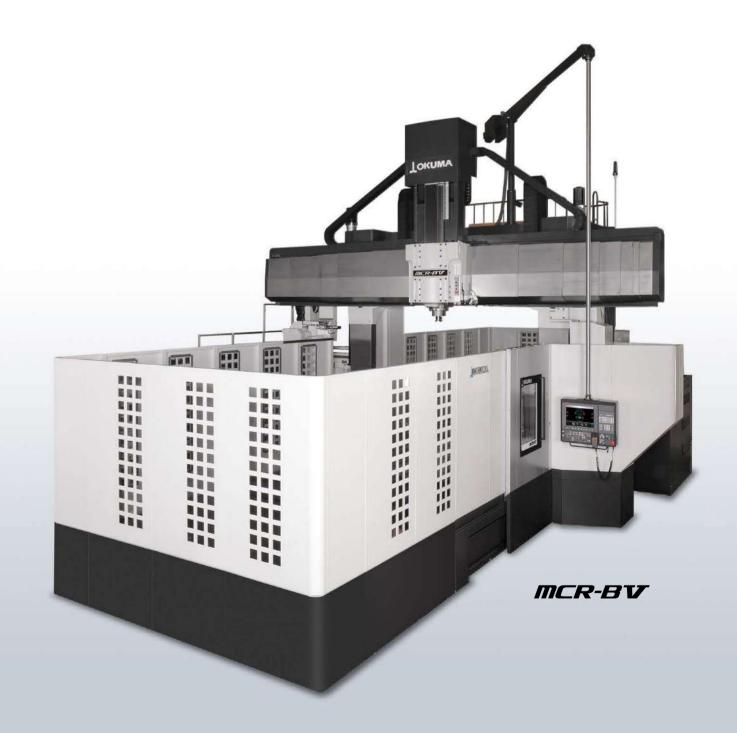


OPEN POSSIBILITIES


Supporting a wide range of machining from powerful cutting of large parts with complex shapes to high-accuracy finishing

The use of an integral motor/spindle provides high torque and high output that enables a wide range of high-quality machining from heavy-duty cutting of iron and castings to high-efficiency machining of aluminum parts.

Equipped with Thermo-Friendly Premium specifications, AbsoScale detection, and 3D Calibration as standard equipment to achieve stable machining accuracy even during long-term continuous operation.

A selection of attachment heads is available that can process complex-shaped parts at optimal conditions.

The MCR-BV is a highly versatile machine that can be used in a wide range of machining applications.

Photographs used in this brochure may show optional equipment.

| 2

Double-column machining center for 5-face applications greatly contributes to productivity improvement with a power-up spindlehead and abundant attachment heads

As a double-column machining center for 5-face applications that meets a wide variety of processing requirements in the machining markets for large parts like the general machinery, vehicles, ships, and aircraft parts industries.

By reducing cycle times, expanding work envelopes, and improving workability, it greatly contributes to the improvement of productivity.

Powerful cutting reduces cycle times

A high torque, high output integral motor/spindle is used as standard equipment for the spindle, and cycle times are shortened by powerful cutting.

Chip volume: 1,170 cm³/min . . . Spindle motor max output: 43 kW, max torque: 1,406 N-m

Expanding work envelopes and providing speedups

Expanded effective width between columns, extended table travels, expanded work envelopes, and increased rapid traverse rates

Rapid traverse . . . X axis: 30 m/min, Y axis: 32 m/min

(Previous model . . X axis: 15 m/min. Y axis: 20 m/min)

High-accuracy machining specifications as standard

Three specifications are used as standard for high-accuracy machining.

- Thermo-Friendly Premium that suppress thermal deformation
- AbsoScale Detection that makes possible highly accurate positioning
- 3D Calibration for volumetric accuracy comparisons

High efficiency with abundant number of attachment heads, for wide-range multitasking machining at will

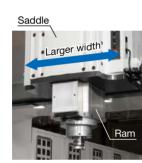
The wide variety of previous attachment heads can also be used.

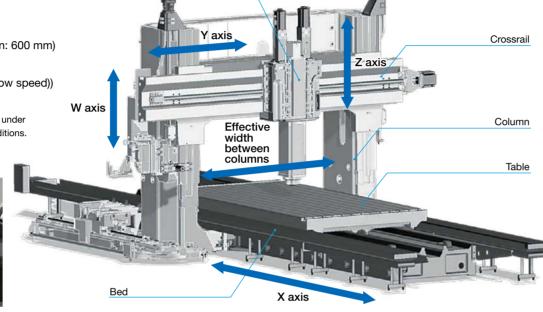
Improved maintainability by improving chip discharge capacity

Double the amount of chips discharged by expanding the conveyor width

X-axis travel (table front /back)	mm	4,200 to 12,200
Y-axis travel (spindlehead L/R)	mm	3,200, 3,700, 4,200
Z-axis travel (ram vertical)	mm	800
W-axis travel (crossrail vertical)	mm	1,000, 1,200
Effective width between columns	mm	2,650, 3,150, 3,650
Speed range	min ⁻¹	30 to 6,000
Table size	mm	2,000 × 4,000 to 3,000 × 12,000
Table maximum load	kg	22,000 to 66,000

Okuma double-column machining centershighly rigid and accurate construction

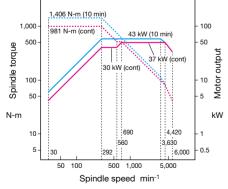

Shortening of cycle times by powerful cutting


By using a high torque, high output integral motor/spindle as standard, it is possible to handle power cutting to high precision finishing.

- Machining capacity: 1,170 cm³/min
 - (workpiece material: S45C, Z-axis protrusion: 600 mm)
- Spindle speed: 6.000 min⁻¹
- Maximum output: 43/37/30 kW (10 min/cont (high speed)/cont (low speed))
- Maximum torque: 1,406/981 N-m (10 min/cont)
- * Note: The data shown here represent "actual data," which may not be obtained under different environmental, machine specifications, tooling, cutting, and other conditions.

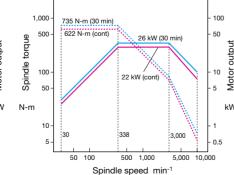
Increased spindlehead rigidity

The saddle which encases the ram is 100 mm wider and more rigid than the previous model.



Spindle variations available for wider cutting ranges

■ Standard spindle


- Spindle speed: 6,000 min⁻¹
- Max output: 43/37/30 kW
 - (10 min/cont (high speed)/
 - cont (low speed))
- Max torque: 1,406/981 N-m (10 min/cont)

■ 10,000 min⁻¹ Spindle (Optional)

- Spindle speed: 10,000 min⁻¹
- Max output: 26/22 kW (30 min/cont)
- Max torque: 735/622 N-m (30 min/cont)

735 N-m (30 min

Increased table rigidity

Saddle

Equipped with a high-rigidity table that can withstand the weight of large workpieces and high cutting forces.

The table is 30% thicker than the previous model.

Rapid traverse rate improved

Rapid traverse ... X axis: 30 m/min* double the previous model

Y axis: 32 m/min

1.6 times that of the previous machine

* X-axis travel: 6,700 mm or less

Larger work envelope

The work envelope has been made bigger by extending the X-axis travel distance and widening the effective width between columns. Ex: 30×50 type

- X-axis travel: **5,200** mm
- +200 mm compared to the previous model
- Effective width between columns: 3,150 mm +100 mm compared to the previous model

Double-column construction with square columns

The double-column structure with square columns has sufficient rigidity for vertical, horizontal, and twisting loads, withstanding heavy-duty cutting and maintaining

Cross beam optimization

A simple structure is achieved with integration of the top beam and cross beam based on structural analysis for the best design. Stable quality is maintained over long times.

(Crossrail vertical movement: W axis)

The crossrail elevating guideways are designed with sufficient length for little zig-zag motion and a long high-accuracy service life.

Spindlehead guideways

(Spindlehead left/right travel: Y axis)

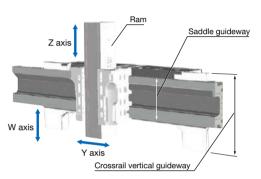
The spindlehead guideway has a highly rigid rectangular cross-sectional geometry. It is also supported by a self-weight balancing device via a roller on the crossrail.

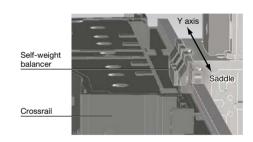
High quality machined surfaces and fast, accurate movements are obtained with these structures.

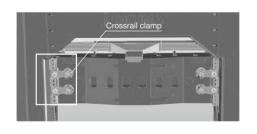
Crossrail clamp

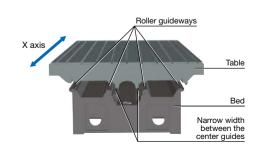
(Crossrail vertical movement: W axis)

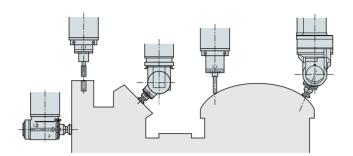

Powerful clamping devices that apply the principle of levers are used on crossrail clamps for powerful


Roller guide system for table guide


(Table front/back movement: X axis)


The table moves with a roller guideway and the heavy weight of the table and workpiece is supported with four roller bearings on hardened and ground guideways. This allows for agile, smooth movements and accurate positioning unaffected by weight changes from heavy workpiece loads.


The layout puts the drive system (ball screw) in the center of the table and narrow, horizontal roller guideways. This can maintain stable, outstanding linear motion straightness over the long term.


Achieve high efficiency with a full array of attachment heads, ATC/AAC, and a wider range of multitasking applications at will

Abundant range of attachment heads

All kinds of shapes can be machined under the best conditions with the abundant variation of attachments.

Many different processes can be performed continuously in auto operation with the auto tool changer (ATC) and auto attachment changer (AAC), greatly increasing productivity.

For oil hole, air hole, thru-spindle coolant, oil mist, and dual contact specifications for each attachment head (some specifications not available).

Attachment head variations

Ext	tension he	ead				
	L150	4,000 min ⁻¹ (43 kW) 6,000) min ⁻¹ (30 kW)	High out	tput specifications 6,0	00 min ⁻¹ (43 kW)
	L250	4,000 min ⁻¹ (37 kW) 6,000) min ⁻¹ (26 kW)	10,000 n	nin ⁻¹ (26 kW)	
	L230	High output specifications 4,0	000 min ⁻¹ (43 kW),	6,000 mi	n ⁻¹ (37 kW)	
·	Others,	L350, L450, L500, L600 20,000	min ⁻¹ (15 kW)			
90°	° angular h	nead				
	L150	3,000 min ⁻¹ (30 kW) 6,000) min ⁻¹ (22 kW)			
	L250	3,000 min ⁻¹ (30 kW) 6,000) min ⁻¹ (22 kW)			
	Others,	L355, C-axis: 1 indexing, Thru-sp	oindle specs, High	output s	pecifications L270 3,0	000 min ⁻¹ (43 kW)
Sp	ecial angu	ılar head				
	30°	2,000 min ⁻¹ (22 kW) 6,000) min ⁻¹ (7.5 kW)	15,000	min ⁻¹ (11.2 kW)	
	45°	2,000 min ⁻¹ (22 kW)				
Un	iversal inc	dex head (B-/C-axis)				
	B, C ax	kis: 5 indexing	2,000 min ⁻¹ (1	5 kW)	6,000 min ⁻¹ (15 kW)	
	B axis:	1 indexing, C axis: 5 indexing	2,000 min ⁻¹ (1	5 kW)	6,000 min ⁻¹ (15 kW)	
	B, C ax	kis: 1 indexing	2,000 min ⁻¹ (1	5 kW)	6,000 min ⁻¹ (15 kW)	20,000 min ⁻¹ (15 kW)
Ver	r/hor swiv	el head				
	L280	3,000 min ⁻¹ (22 kW)				
NC	C-BC unive	ersal head				
	L830	6,000 min ⁻¹ (26 kW)				
	L890	10,000 min ⁻¹ (15 kW)				
	L945	20,000 min ⁻¹ (15 kW)				

^{*}Note: Please consult for applications which may have restrictions.

- Coolant applications for above attachment heads: (1) Coolant/air blow switchable (optional) (2) Oil-mist coolant preparations (optional)
- Attachment head cooler: Equipped with all above attachment heads (standard)

MCR-BII and -BIII attachment heads can also be used

A wide variety of the previous attachment heads can be used.

A built-in B-/C-axis universal index head can also be installed (Optional).

Fast ATC (Automatic Tool Changer)

One ATC arm performs the changes for both the horizontal and vertical spindles. And with the next tool brought to the standby position during a machining operation, the actual tool change can be done in the shortest time possible.

The ATC can be used with a variety of attachment heads: extension, 90° angular, special angular, and B-/C-axis universal index heads.

90° angular head

Universal index head

Smaller and faster AAC (Automatic Attachment Changer)

Completely automate machining of multiple sides with a variety of attachment heads that mount automatically and accept ATC.

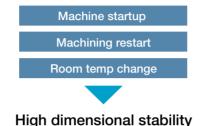
Auto attachment head change: Attachment station moves near the spindlehead below the crossrail, then attachments are changed.

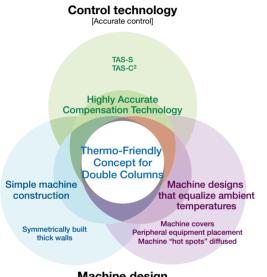
The attachment head station is set at the rear of the ATC magazine behind the column

Changings heads: extension to 90° angular

Changings heads: extension to B-/C-axis universal index

Changings heads: B-/C-axis universal index to 90° angular


^{*}Maximum output is shown in parenthesis.


High accuracy is enabled in normal factory environments

■ Eliminate waste with the Thermo-Friendly Concept

Okuma's Thermo-Friendly Concept achieves high dimensional stability not only when the room temperature changes, but also at machine startups or when machining is resumed. To stabilize thermal deformation, warming-up time is shortened and the burden of dimensional correction during machining restart is reduced.

Minimal temperature deviation

Manageable thermal deformation

Accurate compensation

Machine design Manageable thermal deformation

Super dimensional stability minimizes machining dimensional changes over time

[Manageable Deformation]

[Accurately Controlled]

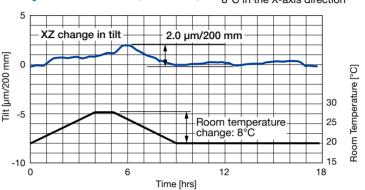
9

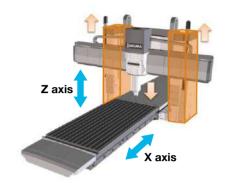
Integrated machine design and control technology

The Thermo-Friendly Concept plays a principal role in our machine design. With simple machine designs and construction that equalize ambient temperatures, deformation is predictable, and complex torsion or tilting is controlled.

Highly accurate compensation technology with the OSP controller developed by Okuma accurately controls thermal

deformation from room temperature changes, spindle thermal deformation from frequently changing spindle speeds, and inconsistent thermal deformation from coolant temperature.

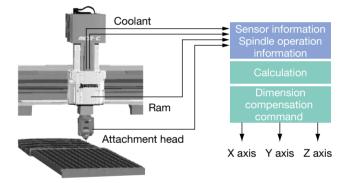

With the Thermo-Friendly Concept (Manageable Deformation—Accurately Controlled), Okuma products provide unrivaled dimensional stability.


■ Thermal deformation of 20 µm or less during a room temperature change of 8°C

The Z-axis tilt due to changes in room temperature has been suppressed more than before by mechanical designing that further adjusts the heat balance of the column without actually cooling the column.

Z-axis tilt due to ambient temperature change

2.0 μm/200 mm (actual data)*1 Ambient temperature chan 8°C in the X-axis direction



*1. Calculated from measurement displacement at the height of 500 mm

■ Thermo Active Stabilizer—Spindle (TAS-S)

Thermal deformation of the spindle from high spindle speeds is accurately controlled (X, Y, Z axes). Accurate control is also performed in cases of frequent spindle speed changes, and thermal deformation of attachment heads are also controlled.

■ Thermo Active Stabilizer—Construction for large machines: TAS-C²

The machine (construction) is optimally controlled to maintain the required machining accuracies even when ambient temperatures change. In addition, it is possible to control dimensional changes due to thermal expansion of the table and obtain stable dimensional accuracy even for large workpieces.

ECO suite

Next-Generation Energy-Saving System

A suite of energy saving applications for machine tools.

■ ECO Idling Stop

Auto cooler turnoff, with accuracy assured

Intelligent energy-saving function with the Thermo-Friendly Concept. The machine itself determines whether or not cooling is needed and cooler idling is stopped with no loss to accuracy.

Electricity consumption during non-machining time greatly reduced with "ECO Idling Stop", which shuts down each piece of auxiliary equipment not in use.

■ ECO Power Monitor

On-the-spot check of energy savings

Power is shown individually for spindle, feed axes, and auxiliaries on the OSP operation screen. The energy-saving benefits from auxiliary equipment stopped with ECO Idling Stop can be confirmed on the spot.

■ ECO Operation (Optional)

10

Intermittent/linked operation of chip conveyor, or mist collector during machining

Maintaining high machine accuracy

3D Calibration

Calibrating the volumetric accuracy of the machine

Any operator can easily calibrate machine accuracy

Factory floor surface deformation over the long term, affects machine accuracy.

With 3D Calibration, the accuracy master, which is the absolute accuracy standard, is installed on the table, and the automatic measurement of the touch probe is performed with a simple operation to check and calibrate the machine accuracy. By calibrating regularly, high accuracy can be maintained over the long term.

Note: The comparison of machine accuracy measurement values that can be calibrated differs depending on the machine specifications and type of accuracy master (Optional) used.

Accuracy Stability Diagnosis Function

Self-diagnosis of changes in machine accuracy

■ To diagnose mechanical thermal deformation due to non-uniform factory temperatures

On production floors where the machine is exposed to wind or sunlight, the temperature around the machine becomes uneven, creating an environment in which the thermal deformation of the machine tends to increase.

The Accuracy Stability Diagnosis Function estimates the change in machine accuracy due to non-uniform factory temperatures, quantifies it as "accuracy stability" and displays that information on the screen.

If the accuracy is unstable, the operator will be notified by a message or alarm. More stable machining accuracy can be achieved by performing accuracy checks and adjustments when notified.

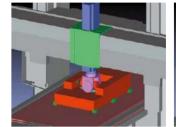
■ Diagnosing changes in machine accuracy from factory floor thermal deformation

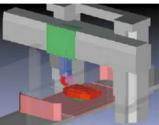
The change in machine accuracy due to thermal deformation of the production floor is also estimated and quantified as a factor of "accuracy stability". Notifications of the best timing for machine accuracy adjustments with 3D Calibration etc, will be provided.

11

Okuma Intelligent Technology exhibits powerful effect on machine shop floors

Collision Avoidance System (Optional)

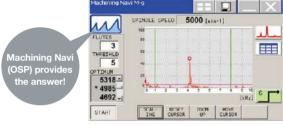

Collision prevention


Significantly reducing setup and trial times

■ "Concentrate on machining" without collision worries

NC controller (OSP) with 3D model data of machine components—workpiece, tool, fixture, spindle, attachment head—performs real time simulation just ahead of actual machine movements. In both automatic operation and manual movements, advance checks are made for interference or collisions and the machine movement is stopped.

Machinists (novice or pro) will benefit from reduced setup and trial cycle times, and the confidence to focus on making parts.


Machining Navi M-gII (Optional)

Cutting condition search for milling/machining

Longer tool life and shorter machining times by optimizing cutting conditions

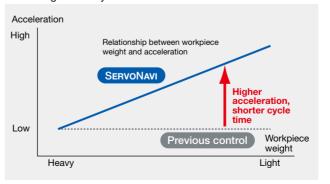
Maximizing machine tool performance

Navigates effective measures by detecting and analyzing machining chatter with a microphone attached to the machine. Effects are seen mainly on high rotation chatter with M-gII.

SERVONAVI

Optimized Servo Control

Achieves long term accuracy and surface quality


SERVONAVI AI (Automatic Identification)

Work Weight Auto Setting

Cycle time shortened with faster acceleration

On table travel type machining centers, the table feed acceleration with the previous system was the same regardless of weight, such as workpieces and fixtures loaded on the table.

Work Weight Auto Setting estimates the weight of the workpiece and fixture on the table and automatically sets the linear axis servo parameters, including acceleration, to the optimum values. Cycle times are shortened with no changes to machining accuracy.

SERVONAVI SF (Surface Fine-tuning)

Reversal Spike Auto Adjustment

Maintains machining accuracy and surface quality

Slide resistance changes with length of time machine tools are utilized, and discrepancies occur with the servo parameters that were the best when the machine was first installed. This may produce crease marks at motion reversals and affect machining accuracy (part surface quality).

Reversal Spike Auto Adjustment maintains machining accuracy by switching servo parameters to the optimum values matched to changes in slide resistance.

Vibration Auto Adjustment

Contributes to longer machine life

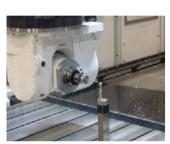
When aging changes machine performance, noise, vibration, crease marks, or fish scales may appear.

Vibration Auto Adjustment can quickly eliminate noise and vibration even from machines with years of operation.

Deflection Auto Adjustment

Maintaining high quality machined surfaces on dies/molds
With fast accleration/deceleration in the machining of dies and
molds, etc, positioning error due to bending (ball screw
expansion/contraction) can affect the machined surface quality.

Deflection Auto Adjustment maintains the surface quality of die/mold machined surfaces by automatically adjusting the servo parameters to match the amount of bending, even when the amount of bending of the ball screw has changed and positioning error has occurred as a result of changes over time.

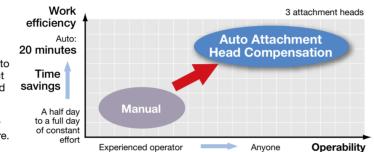

| 12

Technology for high-speed, high-accuracy machining

Rotation compensation that used to take half day to a full day now done automatically in twenty minutes*

Auto Attachment Head Compensation (Optional)

Auto Attachment Head Compensation is a function that is automatically sets attachment head rotation compensation values. It is quick, easy and can be used by anyone. By setting the compensation values, the program commands can be made for tool tip position even with different attachment head type and rotation tilt. Creation of NC programs and machine operation



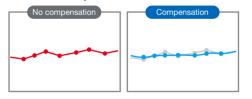
The datum sphere is fixed to the table and measurement preparations are completed by simply positioning the attachment head with attached touch probe near the top of the datum sphere.

becomes much easier.

Auto Attachment Head Compensation performs this rotation compensation work automatically, enabling automatic setting in 20 minutes* for a task that used to take an experienced operator a half to full day with three attachment heads. High machining accuracy can also be maintained with regular measurements.

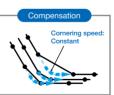
Note: The time needed for automatic settings differs with the attachment head.

With auto machining data compensation


■ Hyper-Surface*1 (Optional)

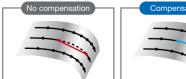
This feature automatically compensates for part program irregularities related to machining surface defects on curved surfaces and suppresses streaks to achieve high surface quality cutting.

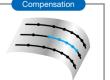
Improve machined surface quality by suppressing variations in command position and feed rates


Automatically compensates for small variations in machining data command positions of output from a CAM processor. And passing speeds for each cutter path at corners are made consistent. That stabilizes feed rates and improves surface quality.

Smooths minor fluctuations and variations Consistent passing speeds to align In command points

corner paths

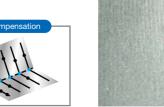

Comparison of machined surface quality



Hyper-Surface No compensation


depths and edge widths. Adjust steps errors between adjacent Reproducing edge lines between sides cutter paths

Correcting uneven spaces between adjacent cutter paths, and reducing inconsistent valley



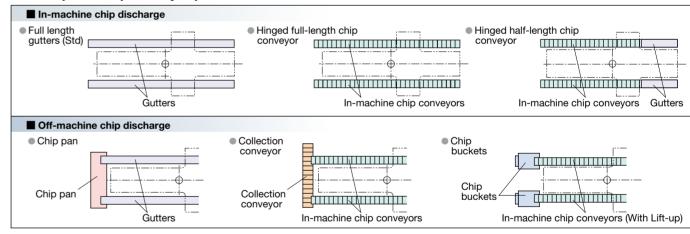
Aligning adjacent cutter paths, reducing ridges

*1. Please contact your Okuma representative for 5-axis applications. There are no limitations for simultaneous operations with the Collision Avoidance System.

Hyper-Surface Compensation

Smooth discharge of large amounts of chips

Recommended specifications for chip discharge


O: Recommended △: Conditionally recommended

	Material	Steel, stainless steel	Cast iron	Aluminum, titanium, non-ferrous metal	Mixed (general)*4	Special blank materials
	Chip shape					Ceramic, carbon, glass, etc.
la assalaisa	Full length gutters (Std)	0	0	(*3 Chip flusher)	0	0
In-machine	Hinge type	0	0	0	0	_
	Hinge type	0	O (Dry)	_	△ (*2)	_
Off-machine	Scraper type	_	O (Dry)	_	_	_
(Collection) conveyor	Magnet scraper type	_	O (Wet)	_	_	_
	2-step (*1) (with drum filter)	△ (*2)	△ (*2)	0	△ (*2)	_

^{*1.} Hinged + scraper type *2. When there are many fine chips

Note: Do not use oil-based coolant which is a fire hazard

Example of chip conveyor placement

Note: Conveyor chip discharge direction (rear), off-machine chip conveyor discharge direction (operation side, magazine side), chip coolant tank position, etc. can be combined to match space. Please consult with your Okuma sales representative to confirm final arrangements.

Collection conveyor chip discharge (lift-up conveyors)

Туре	Hinge	Scraper	Hinge + scraper (with drum filter)
Shape			

^{*3} Chin flusher is an ontional specification

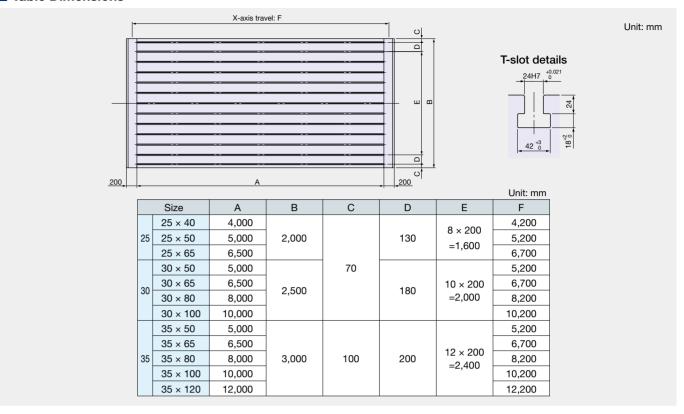
^{*4.} General-purpose applications: steel, stainless steel, cast iron

Standard Specifications

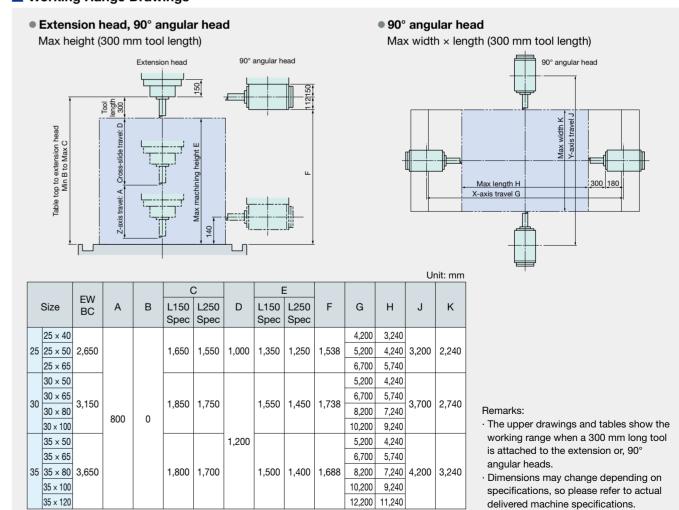
Main material at a short of a tribute		7 and a devolute half a success	
Main motor and standard electricals		Z-axis double ball screw	
Spindle cooler	Oil controller	Full length gutter	Both machine sides
AbsoScale detection (X, Y, Z axes)*1		ATC air blower (blast)	
Thermo-Friendly Premium	TAS-S and TAS-C ² included	Spindle air curtain	
3D Calibration	Includes linear axis error measurement,	Magazine tool loader	
	volumetric error compensation,	ATC magazine safety fence	
	and geometric error compensation	Column slideway covers	
Accuracy Stability Diagnosis		Crossrail clamp system	
Function		Seesaw pendant operation panel	Elevation: 600 mm
Auto gauging & auto zero offset	Touch probe	Work lamp	LED
0.1 µm control*2	Controlled by 0.1 µm increment program	Status indicator	3-color LED
	commands	Door interlock	
Synchronized NC W-axis	Included in AbsoScale detection (W axis)	Tool kit	
Hydraulic unit		Tapered bore cleaning bar	
Automatic Tool Changer	No. of tools: 50	Tool box	

Note: Use of oil-based cutting fluid may cause a fire, so fire prevention measures are required. Unattended operation should not be performed.

Kit Specifications


Machine kit specs	S/DM-S	A/DM-A	P/DM-P	AP/DM-AP
Attachment head ATC		•		•
Attachment head auto attaching/indexing unit (AAC)				•
Attachment head manual tool changing				•
Attachment head coolant lines				•
Auto pallet changer (APC) preparations				•
X-axis 2.0 m travel extension (side shuttle APC)				•

DM: die/mold


Optional Specifications

Automatic pallet changer	2-pallet side shuttle	Ram oil pan slush collector	
	(2.0 m extension in X-axis travel)	Speed-increasing attachment head preps	
Optional Z-axis travel	1,000 mm	Angle head preps	
Coolant system		Auto attachment changer (AAC)	2 stations to 7 stations
Coolant tank	500 L, 1000 L	Attachment head	Please consult
Coolant heater/cooler		Dust-proofing	
Oil skimmer		NC rotary tables	NC rotary table, inclined rotary table
Filtration system		Mist collector	
Semi-dry machining		Dust collector	
Thru-spindle coolant *1	High/low pressure switch (2 MPa, 7 MPa)	Full-enclosure shielding	w/o ceiling, with ceiling
Centralized coolant application		Auto tool length compensation &	Touch sensor system,
Coolant pump	0.75 kW, 1.1 kW	breakage detection	Laser sensor system
Oil mist coolant	Universal nozzle type	In-machine conveyors	Full length, lift-up type
Oil-hole coolant system	High/low pressure switch (2 MPa)		Half length, lift-up type
Chip air blower (blast)			Full length gutter + gutter chip flusher
ATC tool magazine capacity	80, 100, 120, 180 tools	Chip flushers	Crossrail shower (L/R column front),
ATC tools	Tool weigth (35 kg × 100 mm)		front/back gutters with telescopic
Tool shank profile	CAT 50, DIN 50		covers, work wash gun
Pull-stud shape	MAS 1, special CAT	Collection conveyors	Hinged, hinge + scraper (w/ drum filter)
Table T-slot width	20H7, 22H7, 28H7		Hinged + magnetic separator
Table cross-groove width	Please consult for width depth, pitch	Chip buckets	L type, H type
Optional table width	+300 mm	Pendant arms	Parallel linked, manual, electric, floor
High column specs	200 mm, 400 mm		mounted, front/back travel types
	(Please inquire for other specs.)	Foundation methods	Chemical anchors, no foundation bolts
Optional W-axis travel	Standard travel can accommodate		(foundation pad only)
	up to +200 mm, +400 mm	Machine foundation pit work	50 to 1,400 mm (50 mm units)
Fire regulations compliance		Optional control cabinet positions	
Automatic extinguisher		*1. Okuma pull studs required for thru	-spindle coolant.

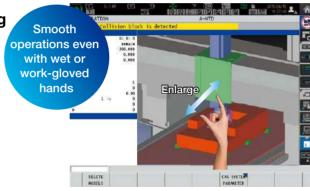
■ Table Dimensions

■ Working Range Drawings

^{*1.} The X-axis uses is a linear scale for n × 65 or larger machines (6,700 mm or more X-axis travel).

^{*2.} For n \times 100 or larger machines (10,200 mm or more X-axis travel), 1 μ m control will be used.

OSP suite osp-p300MA


The Next-Generation Intelligent CNC

With revamped operation and responsiveness ease of use for machine shops first!

Smart factories are using advanced digitization and networking (IIoT) in manufacturing to achieve enhanced productivity and added value. The OSP has evolved tremendously as a CNC suited to advanced intelligent technology. Okuma's new control uses the latest CPUs for a tremendous boost in operability, rendering performance, and processing speed. The OSP suite also features a full range of useful apps that could only come from a machine tool manufacturer, making smart manufacturing a reality.

Smooth, comfortable operation with the feeling of using a smart phone

Improved rendering performance and use of a multi-touch panel achieve intuitive graphical operation. Moving, enlarging, reducing, and rotating 3D models, as well as list views of tool data, programs, and other information can be accomplished through smooth, speedy operations with the same feel as using a smart phone. The screen display layout on the operation screen can also be changed to suit operator preferences and customized for the novice and/or veteran machinists.

Note: Collision Avoidance System (Optional) shown above.

"Just what we wanted."— Refreshed OSP suite apps

This became possible through the addition of Okuma's machining expertise based on requests we heard from real, machine-shop customers. The brain power packed into the CNC, built by a machine tool manufacturer, will "empower shop floor" management.

Maintenance Monitor Routine inspection support

The Maintenance Monitor displays items for inspections before starting daily operation and regular inspections and the rough estimate of inspection timing. Touching the [INFO] button displays the PDF instruction manual file of relevant maintenance items.

Spindle Output Monitor

Increased productivity through visualization of motor power reserve

E-mail Notification

Monitoring operating status even when away from the

Common Variable Monitor

Comment display for greater ease of use and faster work

Screen Capture

Automatic saving of recorded alarms

17

Scheduled Program Editor

Easy programming without keying in code

Connect Plan Get Connected, Get Started, and Get Innovative with Okuma "Monozukuri"

Connect, Visualize, Improve

Okuma's Connect Plan is a system that provides analytics for improved utilization by connecting machine tools and visual control of factory operation results and machining records. Simply connect the OSP and a PC and install Connect Plan on the PC to see the machine operation status from the shop floor, from an office, from anywhere. The Connect Plan is an ideal solution for customers trying to raise their machine utilization.

Standard Specifications

Basic Specs	Control	X, Y, Z, W simultaneous 4-axis, spindle control (1 axis)					
	Position feedback	OSP full range absolute position feedback (zero point return not required)					
	Coordinate functions	Machine coordinate system (1 set), work coordinate system (20 sets)					
	Min / Max command	±9999.9999 mm, ±9999.9999°, 8-digit decimal, command unit: 0.0001 mm, 0.001 mm, 0.01 mm, 1mm, 0.0001°, 0.001°, 1					
	Feed	Override: 0 to 200%, rapid traverse override: 0% to 100%					
	Spindle control	Direct spindle speed commands, override 30 to 300%, multi-point indexing					
	Tool compensation	No. of registered tools: Max 999 sets, tool length/radius compensation: 3 sets per tool					
	Display	15-inch color LCD + multi-touch panel operations					
	Self-diagnostics	Automatic diagnostics and display of program, operation, machine, and NC system problems					
Programming	Program capacity	Program storage: 4 GB, operation buffer: 2 MB					
	Program operations	Program management, editing, scheduled program, fixed cycle, G-/M-code macros, arithmetic, logic statements, math					
		functions, variables, branch commands, coordinate calculate, area machining, coordinate convert, programming help					
Operations	"suite apps"	Applications to visualize and digitize information needed on the shop floor					
	"suite operation"	Highly reliable touch panel suited to shop floors. One-touch access to suite apps.					
	Easy Operation	"Single-mode operation" to complete a series of operations					
		Advanced operation panel/graphics facilitate smooth machine control					
	Machine operations	MDI, manual (rapid traverse, manual cutting feed, pulse handle), load meter, operation help, alarm help, sequence return,					
		manual interrupt/auto return, pulse handle overlap, parameter I/O, PLC monitor, Easy setting of cycle time reduction					
	MacMan	Machining management: machining results, machine utilization, fault data compile & report, external output					
Communications / Ne	tworking	USB (2 ports), Ethernet, DNC-T1					
High speed/accuracy	specs	Thermo-Friendly Premium (TAS-S: Thermo Active Stabilizer—Spindle, TAS-C2: Thermo Active Stabilizer—Construction					
		for large machines), AbsoScale detection (X, Y, Z, W axes), 3D Calibration, Accuracy Stability Diagnosis Function, 0.1 µm					
		control*¹, Hi-Cut Pro, pitch error compensation, Hi-G control, SERVONAVI					
Measuring functions		Auto gauging & auto zero offset					
Energy-saving function	n ECO suite	ECO Idling Stop, ECO Power Monitor *2					

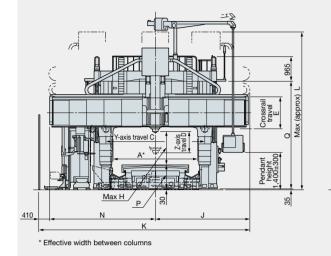
*1. For n \times 100 or larger machines (10,200 mm or more X-axis travel), 1 μ m control will be used.

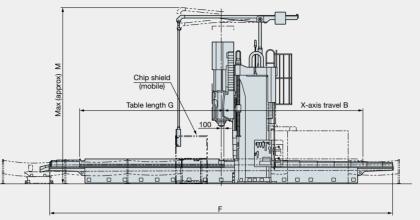
*2. The power display shows estimated values. When precise power values are needed, select the on-machine wattmeter option

	Kit specifications	N	ML	3	BD		ne- uch
tem		Е	D	E	Ъ	E	D
nteractive functions							
Advanced One-Touch I	GF-M					•	•
I-MAP				•			
Programming							
Auto scheduled progra	m update	•		•	•	•	•
G-/M-code macros	1.000				_		_
Common variables (Std: 200)	1,000 pcs				_		
Program branch 2 sets	2,000 pcs				-		_
Program notes (MSG)			•		•	_	•
Coordinate system	100 sets	•		•	-	•	_
selection	200 sets		•		•	_	•
(Std: 20)	400 sets				-		_
Helical cutting (within 3	1	•	•	•	•	•	•
3D circular interpolation							
Synchronized Tapping							
Arbitrary angle chamfer	ring	•	•	•	•	•	•
Cylindrical side facing							
Slope machining							
Permissible spindle spe							
F1-digit feed	4 sets, 8 sets, parameter	_	_	_	_	_	Ļ
Programmable travel lin	nits (G22, G23)	•	•	•	•	•	•
Skip (G31)					-		<u> </u>
Axis naming (G14)					\vdash		
3-D tool compensation Tool wear compensation	un.		•		•		•
	Programmable mirror image (G62)		•		•		•
	Enlarge/reduce (G50, G51)		•		•		
	I/O variables, 16 each		Ť		<u> </u>		Ť
Tape conversion *							
Leading edge offset *							
Inverse time feed							
Alignment compensation	on						
Monitoring							
Real 3D Simulation	Tall and the second	_		•	•	•	•
Simple load monitor	Spindle overload monitor	•	•	•	•	•	•
NC operation monitor	Hour count-up, work counter	•	•	•	•	•	•
Hour meters	Power ON, spindle run-time NC ON time, machining						
Operation end buzzer	With M02, M30, and	\vdash			\vdash		\vdash
Operation end buzzer	END commands						
Work counter	M02, M30 counts				\vdash		
MOP-TOOL	Adaptive control, overload						
	monitor						
Machine Status Logger	•						
Cutting Status Monitor							
Al Machine Diagnosis F							L
Tool life management	Cutting time and number of tools	•	•	•	•	•	•
ECO suite Energy-sav	ing function						
ECO Operation					_		
	On-machine wattmeter	1	1	1	1	1	1
ECO Power Monitor Energy-saving	Inverter system		_	_	-		

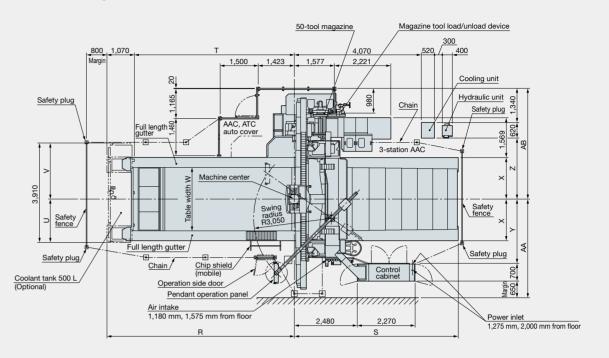
		Kit specifications	NI.	ИL	3	D	To	ne- uch
Item			Е	D	Е	D	E	ДО.
Gauging								
Tool breakage detection		ch sensor (G31) ides tool offset	lr	nclud			chin	e
Gauging data printout	File	output				BD D in ma ecs		П
Manual gauging (w/o s		•	•	•	•	•	•	
		ensor, touch-probe required)						Г
External I/O, Commun								
RS-232C connector								Г
DNC-T3								Г
DNC-B (RS-232C-Ethe	rnet tr	ansducer used on OSP side)						T
DNC-DT								Г
DNC-C/Ethernet								T
Additional USB (2 port	s are s	tandard)						Т
Automated/untended								
Auto power shut-off	$\overline{}$	M02 and END alarms						П
		kpiece preps done → off				•	•	•
Warm-up (by calendar	timer)							Т
External program		on type, rotary switch						T
selection		(2-digit, 4-digit)						
Cycle time reduction (F	Reduce	ed cycle time)						$\overline{}$
High-speed, high-pred		sa cycle time,						
Auto Attachment Head		pensation	П	П	П	П	П	Т
Hyper-Surface *1		3-axis Type A, Type B						T
Super-NURBS *2		5-axis Type A, Type B						T
Simultaneous 5-axis ki	t	o and Type 1, Type B						t
Operations								
Control cabinet lamp	_					П	П	Т
Circuit breaker								t
Sequence operation		Sequence stop						
Upgraded sequence re	start	Mid-block return	<u> </u>	•	_	_	_	
Pulse handles	otart	2, 3 (1 standard)		<u> </u>		_		Ť
LCD pulse handle		z, o (1 standard)						t
External M code		4. 8						t
Collision Avoidance Sy	etam '							┢
Machining Navi M-gII (cutting	condition search function)						t
One-Touch Spreadshe		, containen coaren rancien,						t
Block skip		3 sets						T
Feed axis retract								Т
OSP-VPS (Virus Protect	tion S	vstem)						T
19-inch operation pane		,						t
		ulation, E: Economy, D: Delux		_				_

There are limitations when Hyper-Surface and Collision Avoidance System are used


There are limitations when Super-NURBS and Collision Avoidance System are used


Machine Specifications

			MCR-BV 25			MCR-B	V 30				MCR-BV 35		
Item	Unit	25 × 40	25 × 50	25 × 65	30 × 50	30 × 65	30 × 80	30 × 100	35 × 50	35 × 65	35 × 80	35 × 100	35 × 120
● Travel													
X-axis (table front/back)	mm (in)	4,200 (165.35)	5,200 (204.72)	6,700 (263.78)	5,200 (204.72)	6,700 (263.78)	8,200 (322.83)	10,200 (401.57)	5,200 (204.72)	6,700 (263.78)	8,200 (322.83)	10,200 (401.57)	12,200 (480.31)
Y-axis (spindlehead left/right)	mm (in)		3,200 (125.98)	, , ,	, , ,		0 (145.67)	, , ,	, ,	, , ,	4,200 (165.35)	, , ,	
Z-axis (ram up/down)	mm (in)							1,000 (39.37)]					
W-axis (crossrail up/down)	mm (in)		1,000 (39.37)						1,200 (47.24)				
Effective width between columns	mm (in)		2,650 (104.33)			3,150	0 (124.02)				3,650 (143.70)		
Table to spindle nose *1	mm (in)		0 to 1,650 [0 to 1,550] 0 to 64.96 [0 to 61.02]				0 [0 to 1,750] ^{*1} 3 [0 to 68.90] ^{*1})				0 to 1,800 [0 to 1,700] (0 to 70.87 [0 to 66.93]		
Table													
Working surface	mm (in)	2,000 × 4,000 (78.74 × 157.48)	2,000 × 5,000 (78.74 × 196.85)	2,000 × 6,500 (78.74 × 255.91)	2,500 × 5,000 (98.43 × 196.85)	2,500 × 6,500 (98.43 × 255.91)	2,500 × 8,000 (98.43 × 314.96)	2,500 × 10,000 (98.43 × 393.70)	3,000 × 5,000 (118.11 × 196.85)	3,000 × 6,500 (118.11 × 255.91)	3,000 × 8,000 (118.11 × 314.96)	3,000 × 10,000 (118.11 × 393.70)	3,000 × 12,000 (118.11 × 472.44)
Maximum load	kg (lb)	22,000 (48,400)	27,000 (59,400)	34,000 (74,800)	33,000 (72,600)	43,000 (94,600)	52,000 (114,400)	66,000 (145,200)	29,500 (64,900)	37,000 (81,400)	47,000 (103,400)	61,000 (134,200)	65,000 (143,000)
T-slots Width × No. <center pitch=""></center>	mm	24H7 ×	11 (center 200, both e	nds 130)		24H7 × 13 (center	r 200, both ends 180)				24H7 × 15 (center 200)	
Height from machine bottom	mm (in)		850 (33.46)			900	(35.43)				950 (37.40)		
Spindle													
Speed range	min ⁻¹						30 to 6,000 [30 to 10,000]					
Taper bore							7/24 tap	er No. 50					
Bearing diameter	mm (in)						ø85 (3.35) [ø100 (3.94)]					
● Feedrates													
Rapid traverse *2	m/min (fpm)		X: 30, Y: 32 ^{*3} , Z: 15 98.43, Y: 104.99, Z: 49	0.22)		32 ^{*3} , Z: 15 04.99, Z: 49.22)	1	32 ^{*3} , Z: 15 04.99, Z: 49.22)	X: 30, Y: 3 (X: 98.43, Y: 10	•	(X:	X: 20, Y: 32 ^{*3} , Z: 15 65.62, Y: 104.99, Z: 49	.22)
Cutting feedrate	mm/min (ipm)				1 to 10,000 (0.04 to 393.70)								
W-axis travel rate	m/min (fpm)						3 (9	0.84)					
Automatic Tool Changer													
Tool shank								BT50					
Pull stud								AS 2					
Tool magazine capacity	tools							0, 120, 180]					
Max tool diameter	mm (in)							135 (5.31); w/o adjac	ent tools: ø230 (9.06)				
Max tool length	mm (in)							[600 (23.62)]					
Max tool mass	kg (lb)							(55)					
Tool selection							Fixed	acress					
Motors Spindle drive	kW (hp)					/3/37/20 (57/50/40)) (10 min/cont (high s	need)/cont (love anced	1) [26/22 /25/20) /20	in/cont)]			
Axis feed drives	kW (hp)	X: 9.4, Y: 6.4, Z: 5.2 × 2 (X: 12.5, Y: 8.5, Z: 6.9 × 2)		.4, Z: 5.2 × 2 .5, Z: 6.9 × 2)		43/3//30 (3//30/40)) (10 mil/cont (nights	>	:: 14.0, Y: 6.4, Z: 5.2 × :: 18.7, Y: 8.5, Z: 6.9 ×	2			
Crossrail elevating	kW (hp)	(12.0, 11 0.0, 2. 0.0 × 2)	, , , , , , , , , , , , , , , , , , ,	, 0.0 ^ _/			W: 4.6 ×	2 (6.1 × 2)		-,			
Power Sources	(, ,					
Electrical power supply	kVA						60	D ^{*4}					
Compressed air supply	L/min(ANR)							Pa or more)*4					
Machine Size	, ,						. (*	,					
Height	mm (in)	6,42	20 [6,620] (252.76 [260	.63])				6,70	00 [6,900] (263.78 [271	.65])			
Floor space (machine only)	mm (in)	7,370 × 10,730 (290.16 × 422.44)	7,370 × 12,830 (290.16 × 505.12)	7,370 × 16,430 (290.16 × 646.85)	7,870 × 12,830 (309.84 × 505.12)	7,870 × 16,430 (309.84 × 646.85)	7,870 × 19,430 (309.84 × 764.96)	7,870 × 23,930 (309.84 × 942.13)	8,340 × 12,830 (328.35 × 505.12)	8,340 × 16,430 (328.35 × 646.85)	8,340 × 19,430 (328.35 × 764.96)	8,340 × 23,930 (328.35 × 942.13)	8,340 × 27,930 (328.35 × 1,099.61)
Mass (machine only)*5	kg (lb)	46,000 (101,200)	52,000 (114,400)	60,000 (132,000)	58,000 (127,600)	67,000 (147,400)	80,000 (176,000)	88,000 (193,600)	65,000 (143,000)	75,000 (165,000)	89,000 (195,800)	99,000 (217,800)	113,000 (248,600)
acc (macrinic only)			2=,000 (111,100)	30,000 (102,000)	30,000 (121,000)	2.,000 (111,100)	33,333 (110,000)	30,000 (100,000)	30,000 (110,000)	. 5,555 (100,000)	33,333 (100,000)	35,555 (211,555)	


^{[]:} Optional
*1. [] Numbers when extension head length is 250 mm. *2. For die/mold kits . . . X, Y: 20, Z: 10 m/min. *3. Deceleration near both ends of Y-axis travel *4. Standard specs *5. With 50-tool magazine, 2-station AAC

Dimensional Drawing

Installation Drawing

Unit: mm

)																			
	Size	A	В	С		Z-axis travel 1,000 specs	Е	F	G	Н	J	К													
	25 × 40		4,200					10,730	4,400																
25	25 × 50	2,650	5,200	3,200			1,000	12,830	5,400	1,650	3,260	7,370													
	25 × 65		6,700			-		16,430	6,900																
	30 × 50		5,200					12,830	5,400		3,510	7,870													
30	30 × 65	3,150	6,700	3,700				16,430	6,900	1 050															
30	30 × 80	3,150	8,200	3,700	800	1,000		19,430	8,400	1,850															
	30 × 100		10,200		000	1,000		23,930	10,400																
	35 × 50		5,200				1,200	12,830	5,400																
	35 × 65		6,700					16,430	6,900																
35	35 × 80	3,650	3,650 8,200	4,200				19,430	8,400	1,800	3,730	8,340													
	35 × 100		10,200																			23,930	10,400		
	35 × 120		12,200					27,930	12,400																

Size		L		N	Л			
		Z-axis travel	Z-axis travel	Z-axis travel	Z-axis travel	N	Р	Q
		800 specs	1,000 specs	800 specs	1,000 specs			
25	25 × 40	5,690	5,890	6,420	6,620	3,700	850	3,650
	25 × 50							
	25 × 65							
30	30 × 50	5,940	6,140	6,700	6,900	3,950	900	4,025
	30 × 65							
	30 × 80							
	30 × 100							
35	35 × 50					4,200	950	
	35 × 65							
	35 × 80							
	35 × 100							
	35 × 120							

Size		R	S	Т	U	V	W	Х	Υ	Z	AA	АВ
25	25 × 40	6,310	5,400	5,240	1,455	2,455	2,000	1,386	2,280	2,150	3,630	4,110
	25 × 50	7,360	6,450	6,290								
	25 × 65	9,160	8,250	8,090								
30	30 × 50	7,360	6,450	6,290	1,705	2,205	2,500	1,636	2,530	2,400	3,880	4,360
	30 × 65	9,160	8,250	8,090								
	30 × 80	10,660	9,750	9,590								
	30 × 100	12,910	12,000	11,840								
35	35 × 50	7,360	6,450	6,290	1,955	1,955	3,000	1,886	2,780	2,650	4,130	4,610
	35 × 65	9,160	8,250	8,090								
	35 × 80	10,660	9,750	9,590								
	35 × 100	12,910	12,000	11,840								
	35 × 120	14,910	14,000	13,840								

^{*} Dimensions may change depending on specifications. Please refer to final delivered machine specifications.

Unit: mm

OKUMA Corporation

Oguchi-cho, Niwa-gun, Aichi 480-0193, Japan TEL: +81-587-95-7825 FAX: +81-587-95-6074