

OPEN POSSIBILITIES

Vertical Machining Center

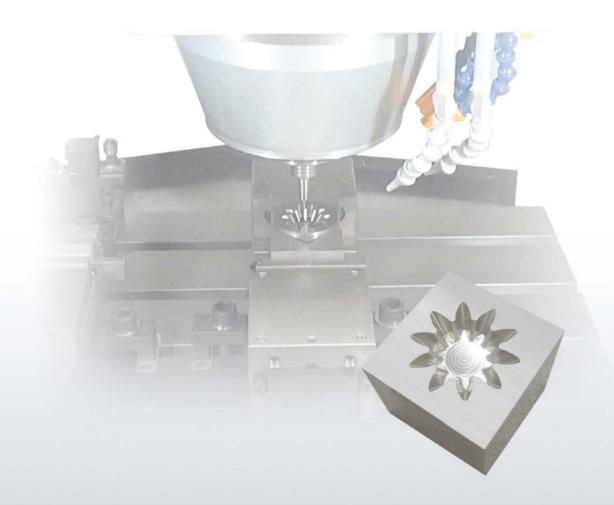
P-46

[For High-Precision Parts and Die/Mold Applications]

Vertical Machining Center

MP-46V

[For High-Precision Parts and Die/Mold Applications]



A higher level of machined surface finish in machining of high-precision parts and die/mold components.

A vertical machining center that approaches the ultimate in quality and efficiency.

43%* reduced cycle times provided by fast spindle and quick accel/decel structural design.

* Actual data from an Okuma machined workpiece (die/mold)

Photographs used in this brochure may show optional equipment.

Die/mold and high-precision parts productivity greatly increased

Huge increases in productivity for die/mold machining

Machine	MP-46V	MP-46V	An Okuma Vertical Machining Center				
	30,000 min ⁻¹ spec	20,000 min ⁻¹ spec	20,000 min ⁻¹ spec				
Cycle time	3 hr, 31 min	5 hr, 10 min	6 hr, 12 min				
Time reduction	43% Reduction Greater increases in productivity with high speed spindle lineup	17% Reduction Shorter times thanks to increased acceleration	_				

Cycle time greatly reduced with increased feed axis acceleration

Axis acceleration: 30% higher (Compared with Okuma vertical machining center)

- Higher productivity with high-speed spindle specs
 - Spindle speeds
 - · 20,000 min⁻¹ (Standard)
 - · 30,000 min⁻¹ (Optional)
 - · 15,000 min-1 (Optional)
- Lens array
- Size: 60 x 60 x 30 mm
- Material: Prehardened steel

Achieves the high surface quality demanded for precision parts

Machining surface roughness

Ra: 0.033 µm Rz: 0.180 µm

- Mirror finishing workpieces
- Size: 50 x 50 x 30 mm
- Material: A7075
- Tool: Single crystal diamond tool

_	High performance provides high											
acc	Accuracy Straightness Perpendicularity Efficiency Cycle time reduction Machining dimensional chan		MP-46V	Okuma VMC								
	Accuracy	Straightness	1 μm	2 μm								
Accur	Accuracy	Perpendicularity	1 µm	3 μm								
	Efficiency	Cycle time reduction	17% Reduction	-								
	Stability	Machining dimensional change	5 μm	8 µm								

Note: The "actual data" referred to in this brochure represent examples, and may not be obtained due to differences in specifications, tooling, cutting, and other conditions.

Achieves high accuracy machining with advanced technology

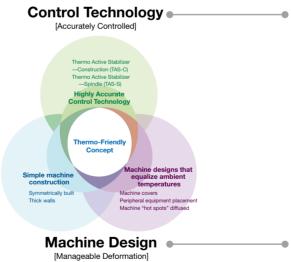
The unique approach of "accepting temperature changes."

Thermo-Friendly Concept

Okuma's Thermo-Friendly Concept (TFC) achieves incredible machining accuracy based on unique structural designing and thermal deformation control technology. It frees the CNC machine tool operator from troublesome dimensional compensation and warm-up operations, while providing for outstanding dimensional stability through long continuous runs and environmental temperature changes inside the factory.

Machining dimensional change over time (actual data) Full table range: 5 µm (room temp change: 8°C)

Thermo-Friendly Concept reduces wastefulness (muda)


In addition to maintaining high dimensional stability when room temperatures change, the Thermo-Friendly Concept also achieves high dimensional stability at machine startup and restart operations. The warm-up time to stabilize thermal deformation is shortened, and the burden of dimension compensation for a machining restart is

Machine startup Machining restart Room temp change

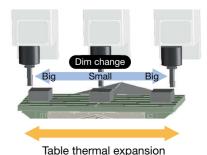
High dimensional stability

Super thermostability minimizes machining dimensional changes over time

Accurate control of thermal displacement for high accuracy

TAS-C Thermo Active Stabilizer—Construction Based on the thermal deformation characteristics of the machine, the mechanical structure due to changes in the ambient temperature is estimated and compensation accurately controlled depending on the actual temperatures obtained from strategically placed sensors and feed axis positioning information.

TAS-S Thermo Active Stabilizer—Spindle In addition to spindle temperature information, by considering spindle rotation, speed changes, and stops, spindle thermal displacement can be accurately controlled even during operations with frequent spindle speed changes.


"Manageable deformation"—structural designing for controlled machine expansion/contraction (predictable directions), with equalized heat transmission.

⟨Table expansion dimensional change⟩

Stable dimensional accuracy over full table range

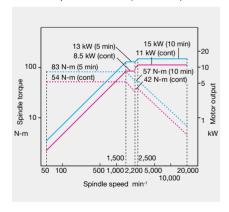
In high-volume machining, placement of the workpiece can cause variation in dimensional accuracy.

Thermo Active Stabilizer—Construction (TAS-C) controls dimensional changes due to heat expansion of the table to achieve stable, high accuracy over the full table range, regardless of the position of the workpiece.

(from room temp change, cutting heat)

Fast and accurate spindle contributes to huge productivity gains

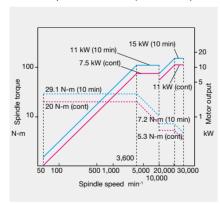
Highly accurate and reliable spindle


Fast and rigid spindles available to match machining needs

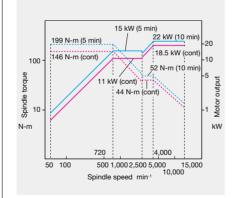
20,000 min⁻¹ spindle

Die/mold semi-roughing, high-quality surface finishing

- Spindle speed: 20,000 min⁻¹ (Std)
- HSK-A63
- Max output: 15/11 kW (10 min/cont)
- Max torque: 83/54 N-m (5 min/cont)



30.000 min⁻¹ spindle


Die/mold high-speed, high-quality surface finishing

- Spindle speed: 30,000 min⁻¹ (Opt)
- HSK-E50, HSK-F63
- Max output: 15/11 kW (10 min/cont)
- Max torque: 29.1/20 N-m (10 min/cont)

High-end general purpose high-speed spindle

- Spindle speed: 15,000 min⁻¹ (Opt)
- BT40, HSK-A63
- Max output: 22/18.5 kW (10 min/cont)
- Max torque: 199/146 N-m (5 min/cont)

Heavy-duty cutting conditions

- 20,000 min⁻¹ spindle (Std)
 Chip volume: 120 cm³/min (prehardened steel)
- Cutting conditions
 Tool: ø40-mm radial cutter, 4 flutes
 Spindle speed: 1,000 min⁻¹

(cutting speed: 126 m/min)

Cutting width: 30 mm
Cutting depth: 1 mm
Cutting feed: 4,000 mm/min
(1 mm/flute)

- 30,000 min⁻¹ spindle (Opt) Chip volume: 80 cm³/min
 - (prehardened steel)

Cutting conditions
 Tool: ø25-mm radial cutter, 3 flutes
 Spindle speed: 1,530 min⁻¹

(cutting speed: 120 m/min)

Cutting width: 17 mm
Cutting depth: 1 mm

Cutting depth: 1 mm

Cutting feed: 4,710 mm/min

(1 mm/flute)

• 15,000 min⁻¹ spindle (Opt) Chip volume: 420 cm³/min

(S45C)

Cutting conditions

Tool: @100-mm face mill

Tool: ø100-mm face mill, 5 blades Spindle speed: 650 min⁻¹

(cutting speed: 205 m/min)

Cutting width: 70 mm Cutting depth: 4 mm

Cutting feed: 1,500 mm/min (0.5 mm/blade)

Note: The "actual data" referred to in this brochure represent examples, and may not be obtained due to differences in specifications, tooling, cutting, and other conditions.

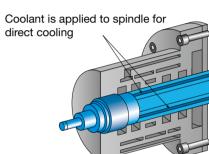
Spindle shaft cooling to minimize effects of heat on tools

For 20,000 min⁻¹, 30,000 min⁻¹ spindles

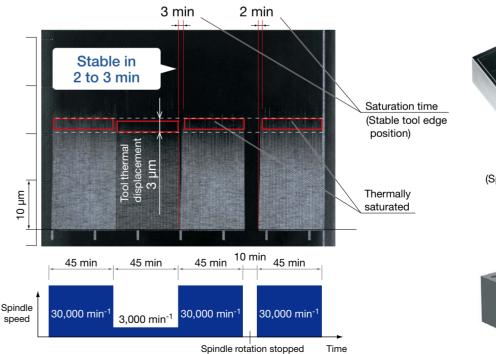
Spindle warm-up is 3 min and boundary errors are minimized (actual data)

Achieved with use of spindle shaft cooling and Thermo Active Stabilizer—Spindle TAS-S

Spindle shaft cooling


Spindle shaft cooling stabilizes tool length by cooling the spindle to minimize temperature changes and decrease thermal deformation. Increases in spindle and tool temperature are inhibited, making higher accuracy machining possible. The thermal deformation saturation time is also shortened, and warming-up can be reduced.

Boundary errors with different tools, such as in corner machining, are greatly reduced. This makes it possible to shorten the finishing time for dies and molds.


Verifying the benefits of spindle shaft cooling

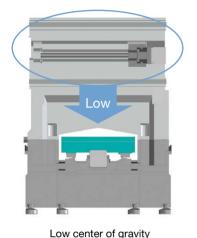
In the sample below (spindle thermal matrix), straight grooves with a gentle slope are cut in a flat surface every minute with a small diameter end mill. Thermal displacement of the spindle shows up as changes in the straight groove length.

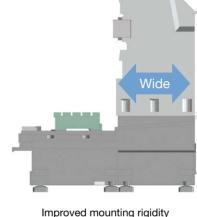
Normally, themal deformation occurs when the spindle speed is changed or until thermal saturation is reached when machining from a stop. Inhibiting spindle temperature changes with spindle shaft cooling reduces thermal deformation so that the time until heat saturation can be shortened.

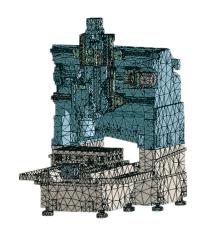
Spindle shaft cooling

Sample (Spindle thermal matrix)

Straight grooves with a gentle slope are cut in a flat surface every minute with a small diameter end mill

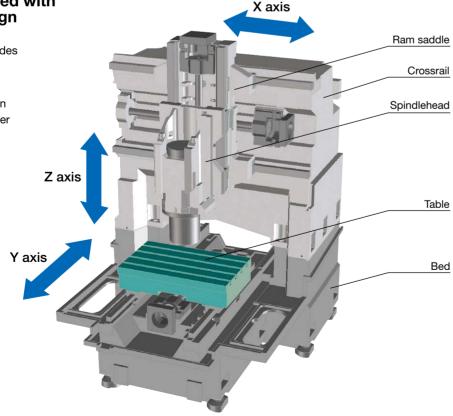

5


Advanced machine structure designing achieves reduced cycle times and high surface quality


Accleration/deceleration increased 30% with highly rigid construction

(Okuma vertical machining center comparison)

- Low vibration, high-rigidity with low center of gravity
- Improved mounting rigidity on crossrail (column) and bed



Effectively using 3D-CAD and FEM analysis

High surface quality achieved with low vibration machine design

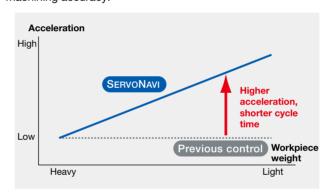
- Uses low "pulsation" (vibration) roller guides
- Optimal use of major components (large castings)
- Separately mounted, detachable vibration sources, such as oil temperature controller and CNC cabinet

Okuma Intelligent Technology for competitive machine shops

Optimized Servo Control

SERVONAVI

Achieves long term accuracy and surface quality


SERVONAVI AI (Automatic Identification)

Workpiece Weight Auto Setting

Reducing cycle times by increasing acceleration

With table moving machining centers, the conventional method uses the same table feed acceleration regardless of the weight of workpiece and fixtures mounted on the table.

SERVONAVI'S Workpiece Weight Auto Setting function automatically sets servo parameters including acceleration by estimating the weight of the workpiece and fixtures on the table, which shortens the cycle time while maintaining the required machining accuracy.

SERVONAVI SF (Surface Fine-tuning)

Reversal Spike Auto Adjustment

Maintains machining accuracy and surface quality

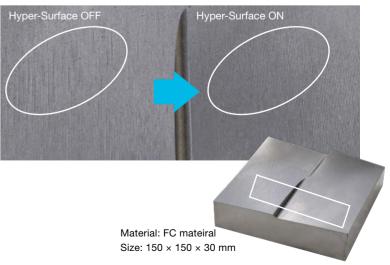
With a machine tool, feed axis resistance changes with its service life, causing servo parameter deviations from the initial optimal settings. As a result, inverted operations may produce visible ridgelines that affect machining accuracy and surface quality.

SERVONAVI'S Reversal Spike Auto Adjustment maintains the required machining and surface quality by optimizing the servo parameters according to the change in the resistance of the feed axis.

Vibration Auto Adjustment

Contributes to longer machine life

When aging changes machine performance, noise, vibration, ridgelines, or fish scales may appear.


Vibration Auto Adjustment can quickly eliminate noise and vibration even from machines with years of operation.

Hyper-Surface (Optional)

Auto machining data compensation, easy and improved die/mold surface quality

There is no need to modify machining data. Ridgelines and uneven surface edges are reduced, the machined surface quality is improved, and hand-polishing times are eliminated. In addition to the Sculptured-Surface Adaptive Acceleration Control featured in the previous Super-NURBS function, the new Hyper-Surface — while maintaining the required shape accuracy — automatically compensates for those edges and adjacent cutter path positioning errors caused by remnants of "disturbances" found in the CAM machining data.

Automatically compensates for misalignment between adjacent cutter paths

■ Machine Specifications

	Item	Unit	MP-46V
Travels	X-axis (ram saddle R/L)	mm (in)	660 (25.98) (ATC stroke not included)
	Y-axis (table B/F)	mm (in)	460 (18.11)
	Z-axis (spindle U/D)	mm (in)	360 (14.17)
	Table top to spindle nose	mm (in)	150 to 510 (5.91 to 20.08)
Table	Dimensions	mm (in)	760 x 460 (29.92 x 18.11)
	Floor to table top	mm (in)	800 (31.50)
	Max load capacity	kg (lb)	350 (770)
Spindle	Speed	min ⁻¹	20,000 [30,000, 15,000]
	Speed ranges		Infinintely variable
	Tapered bore		HSK-A63 [HSK-F63/HSK-E50, 7/24 taper No. 40/HSK-A63]
	Bearing dia	mm (in)	ø80 (ø3.15) [ø60 (2.36), ø70 (2.76)]
Feed rate	Rapid traverse	m/min (ipm)	X-Y-Z : 24 (944.88)
	Cutting feed rate		X-Y-Z: 1 to 24,000
	Spindle (10 min/cont)	kW (hp)	15/11 (20/15) [15/11 (20/15), 22/18.5 (30/25)]
	Feed axes	kW (hp)	X-Y-Z : 3.5 (4.67)
ATC	Tool shank		HSK [BT40 15,000 min ⁻¹ only]
	Pull stud		[MAS 2 15,000 min ⁻¹ only]
	Magazine capacity	tools	20 [32, 48]
	Max tool dia (w/ adjacent)	mm (in)	ø90 (3.54)
	Max tool dia (w/o adjacent)	mm (in)	ø125 (4.92)
	Max tool length	mm (in)	250 (9.84)
	Max tool weight	kg (lb)	7 (15.4)
	Max tool moment	N-m	6.9
	Tool selection		Memory random
Machine size	Height	mm (in)	2,630 (103.54)
	Required floor space; width x depth	mm (in)	2,224 x 2,734* (87.56 x 107.64)
	Mass	kg (lb)	7,000 (15,400) [tank weight not included]
Control			OSP-P300MA

Ball screw cooler not included

Never operate machine unattended.

[]: Optional

Standard Specifications

Spindle speed	15/11 kW (10 min/cont)	ATC air blower (blast)				
50 to 20,000 min ⁻¹	HSK-A63 only	Chip air blower (blast)	Nozzles			
Rapid traverse; X-Y-Z: 24 m/min		Work lamp	LED lamps			
Spindle shaft cooling		Chip pan	Effective 10 L x 2			
Spindlehead cooler	Oil temperature controller	Foundation blocks	8 pcs (with jack bolts)			
Air cleaner (filter)	Regulator included	3-lamp status indicator	Type C (LED signal tower)			
Auto lube system (ALS)	Ball screw, guideway	·	Red (alarm), yellow (end)			
Color LCD operation panel			Green (running)			
Pulse handle	Minimum unit 0.1 µm, 4 speeds	20-tool ATC	HSK-A63			
TAS-S	Thermo Active Stabilizer—	ATC magazine shutter				
	Spindle	Full enclosure shielding	With ceiling			
TAS-C	Thermo Active Stablilizer—	Chemical anchors				
	Construction	Tapered bore cleaning bar				
Linear scale detector	X-Y-Z axes 0.01 μm	Hand tools				
Ball screw cooler X-Y-Z axes		Tool box				
0.1 µm control			I le pump capacity in some cases when usin			
Coolant tank capacities *1	Tank 227 L (Effective 153 L)	oil-based coolant Note: Fire prevention measures are necessary, as oil-based coolants may cause fire				
•	Pump 250 W					

9

Optional Specifications

Wide-range spindle 50 to 15,000 min ⁻¹ △	22/18.5 kW [10 min/cont] *2
High-speed spindle 50 to 30,000 min ⁻¹ △	15/11 kW [10 min/cont] *3
Dual contact spindle △	BIG-PLUS® (15,000 min ⁻¹ spec only)
Optional ATC tool sets	32-tool, 48-tool
Pull stud specs \triangle	MAS/JIS/CAT/DIN (15,000 min ⁻¹ spec only)
High-crossrail specs (+200 mm) △	
Thru-spindle coolant *1	Designated from 1.5 MPa or 7.0 MPa
Chip air blower (adapter)	N/A with thru-spindle; which uses spindle-rotation thru-air spec
Oil mist unit	By oil mist or semi-dry system
Shower coolant	
Workpiece wash gun	
In-machine chip conveyor (coil)	
Lift-up chip conveyor △	Floor, scraper, drum filter types
Chip bucket for above △	
Hyper-Surface	Auto compensation of machining data
	High-speed contouring
Tool breakage detection, auto tool length comp	By touch sensor or laser sensor
Auto zero offset, auto gauging	By touch probe (Renishaw)
Tool life management	(time counter, etc)
Overload monitor	(w/ feed adaptive control)
Automatic door	
Sub-table	

Auto tool length compensation (laser sensor) Measurements on minimum 0.1-mm drills possible during rotation

- \triangle : Corresponding standard specification is deleted
- *1. Okuma pull stud required (general commercial products have different end-face grinding, ring, and through hole diameter)
- * 2. For spindle tapered bore, 7/24 taper No. 40 (BT40, BIG-PLUS®, CAT40, DIN40) or HSK-A63 are available.
- *3. For spindle tapered bore, HSK-F63, E50 are available.

Recommended chip conveyors (Please contact an Okuma sales representative for details)

○: Recommended△: Recommended with conditions

	Material	Steel	FC	AL/Nonferrous metal	Mixed (general use)
	Chip shape				
In-machine	Coil	0	(dry/wet)	_	0
In-machine chip discharge (Optional)	Chip flusher; front discharge	_	(wet)	0	_
	Hinge	0	_	_	△(*4)
Off-machine chip discharge	Scraper	_	(dry)	_	_
(Optional)	Scraper (drum filter)	_	(wet) with magnet	△ (*3)	_
	Hinge + Scraper (drum filter)	△ (*1)	△ (wet) (*2)	0	0

^{*1.} When there are many fine chips *2. When chips are longer than 100 mm *3. When chips are not longer than 100 mm *4. When there are few fine chips Note: When chips are dry, clean out chips that have accumulated under the pallet or elsewhere in the machine as needed. Note: When selecting an off-machine chip discharge chip conveyor, the appropriate in-machine chip conveyor should also be selected.

■ Typical off-machine chip discharge (lift-up chip conveyors)

Туре	Hinge	Scraper	Scraper (drum filter)	Hinge + Scraper (drum filter)
Shape				

10

Creating user- and earth-friendly environments

A variety of applications for efficient work

Good operability

• Front operation of ATC magazine

 Pulse handle: 4 levels (minimum unit: 0.1 μm) (CE compliant)

Easy chip discharge improves workability

Shower coolant (Optional)

 In-machine chip conveyor coil type (Optional)

- Off-machine lift-up chip conveyor (Optional)
- Mist collector (Optional)

Assurance with long-run continuous operation

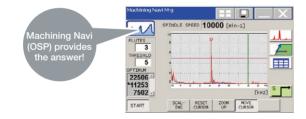
Centralized auto lube supplier

Collision prevention

Collision Avoidance System (Optional)

World's first "Collision-Free Machine"

CAS prevents collisions in automatic or manual mode, providing risk-free protection for the machine and great confidence for the operator.



Cutting condition search for milling

Machining Navi M-i, M-g II+ (Optional)

Searches for the best cutting conditions

Machining Navi M-i automatically changes to optimum spindle speed
 Machining Navi M-gII+ shows several candidate cutting speeds

Next-Generation Energy-Saving System

ECO suite

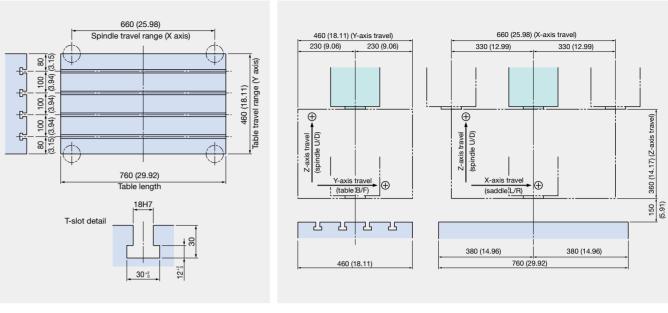
A suite of energy saving applications for machine tools

ECO Idling Stop Accuracy ensured, cooler off

Intelligent energy-saving function with the Thermo-Friendly Concept.

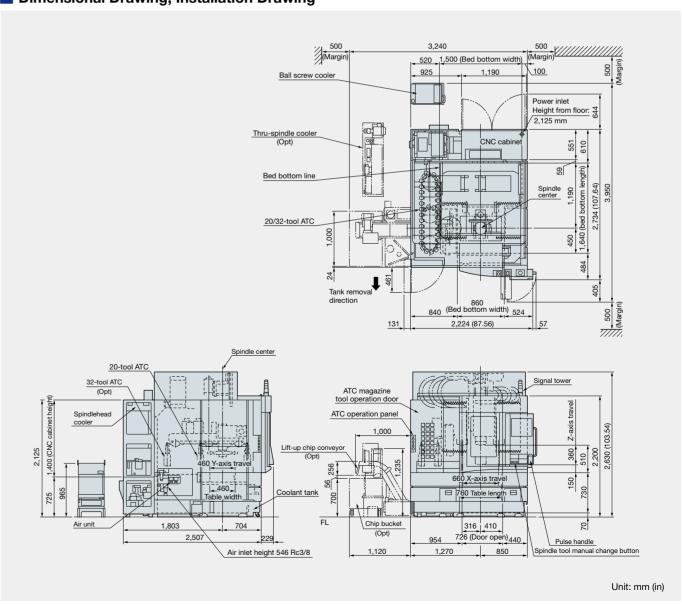
The machine itself determines whether or not cooling is needed and cooler idling is stopped with no loss to accuracy. Electricity consumption during non-machining time greatly reduced with "ECO Idling Stop", which shuts down each piece of auxiliary equipment not in use. (Standard application on machines with Thermo-Active Stabilizer—Spindle)

ECO Power Monitor On-the-spot check of energy savings


Power is shown individually for spindle, feed axes, and auxiliaries on the OSP operation screen. The energy-saving benefits from auxiliary equipment stopped with ECO Idling Stop can be confirmed on the spot.

ECO Operation (Optional)

11


Intermittent/continuous operation of chip conveyor and mist collector during operation

■ Table Size Unit: mm (in) ■ Working Ranges

Unit: mm (in)

■ Dimensional Drawing, Installation Drawing

| 12

OSP suite OSP-P300MA

With revamped operation and responsiveness ease of use for machine shops first!

Smart factories are using advanced digitization and networking (IIoT) in manufacturing to achieve enhanced productivity and added value. The OSP has evolved tremendously as a CNC suited to advanced intelligent technology. Okuma's new control uses the latest CPUs for a tremendous boost in operability, rendering performance, and processing speed. The OSP suite also features a full range of useful apps that could only come from a machine tool manufacturer, making smart manufacturing a reality.

Smooth, comfortable operation with the feeling of using a smart phone

Improved rendering performance and use of a multi-touch panel achieve intuitive graphical operation. Moving, enlarging, reducing, and rotating 3D models, as well as list views of tool data, programs, and other information can be accomplished through smooth, speedy operations with the same feel as using a smart phone. The screen display layout on the operation screen can also be changed to suit operator preferences and customized for the novice and/or veteran machinists.

Note: Collision Avoidance System (Optional) shown above.

"Just what we wanted."— Refreshed OSP suite apps

This became possible through the addition of Okuma's machining expertise based on requests we heard from real, machine-shop customers. The brain power packed into the CNC, built by a machine tool manufacturer, will "empower shop floor" management.

Routine inspection support **Maintenance Monitor**

The Maintenance Monitor displays items for inspections before starting daily operation and regular inspections and the rough estimate of inspection timing. Touching the [INFO] button displays the PDF instruction manual file of relevant maintenance items.

Increased productivity through visualization of motor

Spindle Output Monitor

Monitoring operating status even when away from the

E-mail Notification

Comment display for greater ease of use and faster work Common Variable Monitor

Automatic saving of recorded alarms Screen Capture

13

Easy programing without keying in code **Scheduled Program Editor**

Get Connected, Get Started, and Get Innovative with Okuma "Monozukuri" Connect Plan

Connect, Visualize, Improve

Okuma's Connect Plan is a system that provides analytics for improved utilization by connecting machine tools and visual control of factory operation results and machining records. Simply connect the OSP and a PC and install Connect Plan on the PC to see the machine operation status from the shop floor, from an office, from anywhere. The Connect Plan is an ideal solution for customers trying to raise their machine utilization.

Standard Specifications

- otaniaana e	poomoatio	<u></u>						
Basic Specs	Control	X, Y, Z, simultaneous 3 axis, spindle control (1 axis)						
	Position feedback	OSP full range absolute position feedback (zero point return not required)						
	Coordinate functions	Machine coordinate system (1 set), work coordinate system (20 sets)						
	Min / Max command	±99999.999 mm, ±9999.9999° 8-digit decimal, command unit: 0.001 mm, 0.01 mm, 1 mm (0.0001°, 0.001°, 1°)						
	Feed	Cutting feed override 0 to 200%, rapid traverse override 0 to 100%						
	Spindle control	Direct spindle speed commands override 30 to 300%, multi-point indexing						
	Tool compensation	No. of registered tools: Max 999 sets, tool length/radius compensation: 3 sets per tool						
	Display	15-inch color LCD + multi-touch panel operations						
	Self-diagnostics	Automatic diagnostics and display of program, operation, machine, and NC system faults						
Programming	Program capacity	Program storage capacity: 4 GB; operation backup capacity: 2 MB						
	Program operations	Program management, editing, multitasking, scheduled program, fixed cycle, G-/M-code macros, arithmetic, logic s						
		math functions, variables, branch commands, coordinate calculate, area machining, coordinate convert, programming help						
Operations	"suite apps"	Applications to graphically visualize and digitize information needed on the shop floor						
	"suite operation"	Highly reliable touch panel suited to shop floors. One-touch access to suite apps.						
	Easy Operation	"Single-mode operation" for a series of operations for a single screen						
		Easy-to-use operation panel supports complete machine control						
	Machine operations	MDI, manual (rapid traverse, manual cutting feed, pulse handle), load meter, operation help, alarm help, sequence return,						
		manual interrupt/auto return, pulse handle overlap, parameter I/O, PLC monitor, cycle time reduction—easy setting						
	MacMan	Machining management: machining results, machine utilization, fault data compile & report, external output						
Communications / Netv	vorking	USB (2 ports), Ethernet						
High speed/accuracy s	pecs	Hi-G Control, Hi-Cut Pro, pitch error compensation, SERVONAVI, Machining Time Shortening Function,						
		TAS-S (Thermo Active Stabilizer—Spindle), TAS-C (Thermo Active Stabilizer—Construction)						
Energy-saving function	ECO suite	ECO Idling Stop *1, ECO Power Monitor *2						
		*1 Spindle cooler Idling Step is used on TAS S machines						

Ontional Chapifications

- Spindle cooler Idling Stop is used on TAS-S machines
- *2. The power display shows estimated values. When precise electrical values are needed, select the wattmeter option.

Kit Specs*1		N	ML	3	D	A	ОТ	Kit Specs*1	NN	1L	30)	A
tem	Till Open	Е	D	Е	D	Е	D	Item	E	D	Е	D	Е
nteractive functions								Gauging					
Advanced One-Touch (Real 3D simulation in						•	•	Auto gauging Touch probe (G31)	Ind	clud	ed in spe		chir
Interactive MAP (I-MA	AP)			•	•			Auto zero offset Includes auto gauging	Inc	clud	ed in		chir
rogramming	am undata							Tool breakage Touch sensor (G31)	In	ماريط	ed in		
Auto scheduled progra	am update	•	•	•	•	•	•	Tool breakage Touch sensor (G31) detection Includes auto tool offset	inc	ciua	ea in spe		Snir
G-/M-code macros	14.000			-				Gauging data printout File output			Spe	<u> </u>	
Common variables (Std: 200 pcs)	1,000 pcs	-		-				Manual gauging (w/o sensor)		•	•	•	•
Program branch; 2 set	2,000 pcs	-		\vdash				Interactive gauging (Touch-sensor, touch-probe required)	-	•	-	-	_
Program notes (MSG)	is	-	•	-	•		•	External I/O communication				-	
	Lan .		•		•			RS-232C connector			$\overline{}$		
Coordinate system selection	100 sets	•		•		•		DNC-T3	\vdash		_	\dashv	
(Std: 20 sets)	200 sets		•	-	•		•	DNC-B (RS-232C-Ethernet transducer used on OSP side)	\vdash	\dashv	-	\dashv	_
	400 sets		_	_	_	_			\vdash	\dashv	\rightarrow	\dashv	_
Helical cutting (within	,	•	•	•	•	•	•	DNC-DT DNC-C/Ethernet		\dashv	\rightarrow	\dashv	_
3D circular interpolation		L.						Additional USB (Additional 2 ports, Std: 2 ports)	\vdash	\dashv	-	\dashv	_
Synchronized Tapping		•	-	•	•	•	•	Automation / untended operation					
Arbitrary angle chamf	•	•	•	•	•	•	•						
Cylindrical side facing								Auto power shut-off M02 and END alarms Work preps done → OFF		•		•	
Slope machining								Warm-up (calendar timer)	\vdash	\dashv	-	\dashv	_
									\vdash		-	-	_
Tool grooving (flat-tool free-shaped grooving) Tool max rotational speed setting								External program Button, rotary switch, selection digital switch, BCD					
F1-digit feed	4 sets, 8 sets, parameter							(2-digit, 4-digit)	i				
Programmable travel I	imits (G22, G23)	•	•	•	•	•	•	Cycle time reduction (Ignores certain commands)		•	•		•
Skip (G31)								Robot. loader I/F			-		_
Axis naming (G14)								High-speed, high-accuracy					
3D tool compensation	1							Hyper-Surface*3			$\overline{}$	_	
Tool wear compensati	on		•					ECO suite (energy saving functions)			_	_	_
Drawing conversion	Programmable mirror image		•		•		•	ECO Operation			Т	Т	
	(G62)		Ĭ		Ĭ		Ĭ	ECO Power Monitor On-machine wattmeter	ΙŢ			\neg	_
	Enlarge/reduce (G50, G51)		•		•		•	Other					
User task 2	I/O variables (16 each)							Control cabinet lamp (inside)	\Box	П	$\overline{}$	Т	_
Tape conversion*2								Circuit breaker	\vdash		\neg	\dashv	_
onitoring								Sequence operation Sequence stop	•	•	•	•	•
Real 3D simulation				•				Upgraded sequence restart Mid-block return		•		•	Ť
Simple load monitor	Spindle overload monitor			•				Pulse handle 2 pts, 3 pts (standard 1 pt)	\vdash			_	_
NC operation monitor	Hour meter, work counter			•				External M code 4-point, 8-point	\vdash	_	\dashv	\dashv	_
Hour meters	Power, spindle, NC, cutting							Collision Avoidance System*3	\vdash	\dashv	\dashv	\dashv	_
Operation end buzzer	With M02, M30, and END commands							Machining Navi M-i, M-gII+ (cutting condition search)					_
Work counter	With M02 and M30 commands							One-Touch Spreadsheet	\sqcup				
MOP-TOOL	Adaptive control, overload monitor	Т						Block skip; 3 sets OSP-VPS (Virus Protection System)	\vdash	\dashv	+	\dashv	_
	 			\vdash	_	_		, ,					_
Al Machine Diagnosis Function	Feed axes / Spindle							 NML: Normal, 3D: Real 3D simulation, AOT: Advanced One E: Economy, D: Deluxe 	e-Tou	ıch	IGF-I	M	
Machining Status Log	ger							*2. Technical consultation needed for specifications					
Cutting Status Monito	r							*3. There are limitations when Hyper-Surface and Collision Av	oidar	nce !	Svste	m a	re

14

OKUMA Corporation

Oguchi-cho, Niwa-gun Aichi 480-0193, Japan TEL: +81-587-95-7825 FAX: +81-587-95-6074